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It is found that, for the range of distances and frequencies typically used in

engineering applications, body wave fronts generated by point sources cannot be

considered plane and that near-field effects associated with spherical wave fronts

can be very important. The near-field effects are caused by coupling between waves

which exhibit the same particle motion but which propagate at different velocities

ard attenuate at different rates. To minimize the detrimental effects of near-field
waves in those methods based on spectral analysis techniques, it is recommended that,

in the field setup, the ratio of distances from the source to the second and first

receivers be of the order of two or greater. For typical setups in which the

distance from the source to the first receiver is equal to the distance between the

receivers, near-field effects can be neglected if'measurements are made at

frequencies such that the distance from the source to the closest receiver is at

least one wavelength. Additional recommendations regarding body wave techniques are
presented.
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ABSTRACT

In situ seismic methods are becominjwidely used as a means ofpJ

nondestructively evaluating the elastic properties of geotechnical systems.

The crosshole and downhole seismic methods are most often used. -The elastic

constants are calculated from the records of body waves (longitudinal and

transverse waves) traveling through the media. Measurements are made by

generating a seismic disturbance at one point and measuring the time required

for the disturbance to travel to one or more seismic receivers. Several

simplifying assumptions are made in the traditional analysis of seismic

measurements for engineering purposes. These 4sumptions)include assuming

plane wave propagation, measurement of only far-field waves, and independence

of the measurements on the source-receiver configuration and on the amount of

material damping. An analytical study of the effects and the validity of the

different assumptions is presented. A review of existing techniques to

evaluate seismic data based on time domain analysis is performed, and new

techniques based on correlation and spectral analyses are presented.

Emphasis is placed on determination of wave velocities and attenuation

parameters from which elastic properties and material damping can be

calculated.

,It is found that, for the range of distances and frequencies typically

used in engineering applications; body wave fronts generated by point sources

cannot be considered plane3 and i*tnear-field effects associated with

spherical wave fronts can be very important. The near-field effects are

caused by coupling between waves which exhibit the same particle motion but

which propagate at different velocities and attenuate at different rates. To

minimize the detrimental effects of near-field waves in those methods based

on spectral analysis techniques, it is recommended that, in the field setup,

the ratio of distances from the source to the second and first receivers be

of the order of two or greater. For typical setups in which the distance

from the source to the first receiver is equal to the distance between the - S
receivers, near-field effects ca be neglected if measurements are made at

frequencies such that the distance from the source to the closest receiver is

at least one wavelength. Additional recommendations regarding body wave

techniques are presented.
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CHAPTER ONE

INTRODUCTION

1.1 SEISMIC METHODS IN CIVIL ENGINEERING

Steel, concrete, soil, rock, pavement and other engineering

materials behave like elastic bodies at small strains. For soil,

rock and pavement materials, small strains can be considered any

strains on the order of o.ool percent or less. The small-strain

range in steel and concrete is considerably higher. Stresses

produced by a source releasing energy into the medium which creates

small strains will propagate away from the source as elastic waves.

The velocities at which these waves propagate depend mainly on the

elastic moduli of the materials that compose the medium.

Therefore, if one generates small-strain stress waves and measures

propagation velocities, elastic material properties can be

calculated. Such measurements are typically categorized as seismic

measurements.

It is the purpose of this study to understand more completely

seismic measurements as used for engineering applications. Most

applications of seismic methods, to date, have been by exploration

geophycisists, seismologists and petroleum engineers. The main

efforts of these groups have been directed toward determining

abrupt and broad geological changes in the interior of the earth,

generally at great depths within rock formations. Estimation of

the structure of the earth or location of the position of natural

resources was typically the goal of those measurements. This

I% %I tZ
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information was generally obtained by studying the arrivals of

waves (usually compression waves) that were reflected or refracted

at the interfaces of layers with very different elastic properties.

Engineers have also been interested in locating abrupt
structural changes in earth materials. In addition to

interpretation of the structural bedding surfaces, engineers have

been attempting to determine the physical properties and

stratigraphy of the uppermost zone of the earth. In certain cases

near the surface of the earth, conventional sampling techniques can

be used. In other cases, at greater depths or under circumstances

where conventional sampling techniques and laboratory testing are

not feasible or do not provide an adequate evaluation of the

physical properties of the materials being tested, seismic methods

offer the engineer a viable tool for evaluating engineering

materials.

The emphasis in this research is placed on developing

analytical formulations with which synthetic seismic records can be

generated. These synthetic records are then processed following

standard field procedures used in engineering applications. The

applicability and limitations of the uses and processing of seismic

records are studied. The thrust of this work is placed on wave

velocity measurements (hence elastic stiffnesses), but attenuation

measurements (material damping) are also addressed. I
."

1.1.1 Uses and benefits of seismic methods

As analytical techniques to analyze physical problems are

becoming more and more sophisticated, so are the laboratory testing

methods used to determine the properties of the materials involved

Z'
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in these problems. There are, however, several difficulties

inherent with laboratory testing of sampled materials that do not

exist with in situ methods. One of these difficulties is trying to

minimize the disturbance caused by sampling methods in testing

materials (especially in geotechnical materials). This

complication is almost completely avoided by most seismic field

methods since there is no need to obtain any physical samples.

Another shortcoming of laboratory techniques is caused by the

inability to simulate properly in situ stress conditions. With

field testing techniques, in situ stress conditions do not need to

be simulated since they are, in most cases, the stresses acting in

the materials at the time the tests are performed. A further

obstacle in laboratory testing occurs when one tries to obtain

representative samples of the zone of interest. Many times the

specimens tested are only characteristic of a small area within a

larger zone having some irregularities (like in most jointed rock

and in soils with primary and secondary structure). With most of

the seismic methods, however, the areas sampled by the propagating

waves are large enough so that the properties obtained are

representative of the zone of concern.

When compared with other in situ testing methods, such as the

standard penetration test and the cone penetration test (in soils),

seismic methods have the advantages that: 1) they can be tailored

to sample small or large zones of materials; 2) they have a strong

theoretical basis (the theory of elasticity) and are not dependent

on empirical correlations; and 3) measured wave velocities are

independent of equipment used and do not need correction factors

like many of the other in situ testing methods.

The most important properties usually obtained from seismic

tests are the elastic shear modulus (G), which is obtained from the

. .. . . " * -." 1.- - . . .. . . . - . - " . --- ."
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propagation velocity of shear waves, the constrained modulus (M),

which is obtained from the propagation velocity of longitudinal

waves, and Poisson's ratio (v) which can be calculated if shear and

longitudinal wave velocities are known. Other properties like mass

density (p), material damping (D), strain amplitudes and strain

rates can be inferred or estimated from the analysis of wave

propagation records. One of the main objectives of this study is

to understand better what and how variables affect wave velocities

calculated from various propagation measurements as outlined in

Section 1.3.

Elastic properties obtained from seismic methods are those

corresponding to very low-amplitude strains (strains less than

0.001 percent for most geotechnical materials). Elastic moduli at

these small strains are usually called initial tangent moduli.

Initial tangent moduli are used directly as the stiffness of

engineering materials in vibration problems where the amplitudes of

the vibrations are kept very small (as is the case of most problems

concerning vibrations of soils and foundations). For larger-

amplitude straining, initial tangent moduli represent key

parameters needed to fit nonlinear material models.

For anisotropic materials like soils, it is possible to

determine the small-strain elastic properties in different

directions by generating waves whose motions are polarized in

different planes. In fact, one of the possible future uses of

seismic methods in soils is to evaluate the state of stress from a ii
three-dimensional picture of the seismic wave velocities (Lee and

Stokoe, 1986). 0

In the same way that geophysicists are interested in I
determining structural changes and discontinuities in subsurface

Pi
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materials, so are engineers interested in locating anomalies of

engineering materials. In this respect seismic methods can be used

to determine layering and properties of pavement systems; to detect

cracks and other anomalies like voids in structural members, rock

formations or pavement systems; to locate tunnels; in the integrity

testing of piles and piers and other structures where construction

specifications are difficult to check; and for many other purposes.

In Geotechnical Engineering, one of the major areas for the

use of seismic methods and the area of focus in this study, shear

and constrained moduli and their variation with strain are

essential in characterizing soil behavior under dynamic loadings

such as those created by earthquakes and blasting, in determining

dynamic stiffnesses of foundations for soil-structure interaction

analyses, and in evaluating the liquefaction susceptibility of

cohesionless soils by the strain approach. Seismic methods often

used to determine the variation of initial shear and constrained

moduli with depth include the crosshole, downhole, surface

refraction, surface reflection, steady-state Rayleigh-wave method

and the spectral-analysis-of-surface-waves (SASW) method. Of these

techniques the crosshole and the downhole methods (body wave

methods) are the most widely used methods today for engineering

applications and the ones that provide the most reliable results.

The SASW method, a variation of the steady-state Rayleigh-wave

method, is a promising new technique that has all of the advantages

of the steady-state method without having its disadvantages. The

surface refraction and surface reflection techniques are not

suitable for most engineering applications since one is not able to
obtain detailed moduli profiles with these methods.

-. - -....... .-... ... -.....- %
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1.2 SEISMIC METHODS BASED ON BODY WAVES

Body wave methods are based on the fact that the velocity at

which seismic waves travel through the interior of materials

depends on the elastic properties of the materials. Measurements

are made by generating a seismic disturbance at one point in the

medium and measuring the time required for the disturbance to

travel to one or more seismic receivers. If the distances

travelled by the measured waves are known, body wave velocities can

be calculated by dividing the distances by the corresponding travel

times.

From the theory of plane wave propagation in a homogeneous

isotropic elastic body, it can be shown that two types of body

waves propagate. The first type, usually called the

compressional-, primary- or P-wave, propagates at a velocity cp (or

Vp; both notations are used in this study) which is given by

Cp2  M/p (1.la)

or

C = ( + 2G)/p (1.lb)

or

cp2 - E(1 - v) (1.1c)P p(1 + v)(1 - 2v)

where, ii

e. 4.. of %.5% -f q4 Vs, .4
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M is constrained modulus of elasticity,

p is mass density,

x is Lame's constant of elasticity,

G is shear modulus of elasticity,

E is Young's modulus of elasticity, and

v is Poisson's ratio.

The second kind of body wave is called the shear-,

transverse-, secondary- or S-wave and propagates at a velocity cs

(or vs) given by

Cs2 = G/p (1.2)

For plane wave propagation, P-waves are characterized by

particle motion along the line of the wave advance, while S-waves

are distinguished by having particle motion perpendicular to the

direction of wave propagation. A look at Eqs. 1.1 and 1.2 shows

that, in the same material, P-waves propagate at a much faster

speed than S-waves, with the difference in velocities depending on

the value of Poisson's ratio.

The most common methods to determine wave propagation

velocities in the field for engineering applications are the

crosshole and downhole (or uphole) methods. In the crosshole

method, the time required for body waves to travel horizontally

between several points located at the same depth is measured. By

repeating the process at different depths, a profile of shear and

compressional wave velocities with depth can be obtained. In the

downhole method, a seismic disturbance is generated at a point on

the surface, and the waves are monitored at several points in the V

interior of the soil mass. By measuring the travel times, wave

K.



velocities can be calculated after travel distances have been

determined.

Elements required in downhole and crosshole seismic surveys

are boreholes, sources, receivers and recording and triggering

systems. Typical field procedures are shown schematically in

Figs. 1.1 and 1.2. A detailed analysis of the field processes and

data analysis can be obtained in Woods (1978), Stokoe and Hoar

(1978), Corps of Engineers EM 1110-1-1802 (1979), Patel (1981) and

Hoar (1982).1

1.3 ORGANIZATION AND OBJECTIVES OF THIS REPORT

If increasingly broader and more accurate conclusions and

information are to be drawn from seismic records, it is essential

to understand better the wave propagation signatures and the

methods to analyze these signatures. Geophysical applications

usually involve analysis of seismic waves that are recorded at far

distances from the source. At these long distances, body waves are

usually considered plane waves (plane fronts). The fact that these

waves were generated by a point source and therefore are

propagating with a spherical wave front is usually neglected

without incurring serious errors. For engineering applications,

however, seismic waves are recorded at short aistances from the

source and should not be considered plane if a precise evaluation

of elastic velocities is necessary. An analytical formulation to

generate wave propagation records produced by a point source in a

full space (and therefore spreading in a spherical pattern) is

explained in Chapter Two. It is not intended in this chapter to

give a general overview of the theory of wave propagation in a--11

linearly elastic, homogeneous and isotropic body. However, by e

0

77,;

V. .o

% % " %

I% N V% -



f- II

.P,



,r -ru ------

10

Trigeloit Trnsdger Hamme

I I Wed~eclOn ncli .ed

HaImmer Blow

Csing
Generation of
Body Waves

'.%

3-D Velocity Transducer
Wedged in Place

Fig. 1.2 - Downhole seismic method (after Stokoe and Hoar,
1978).

' . . . . . ... .. ... ... . . . . .



11 S

1%

making use of the Green's functions formulation of displacements

produced by a point load in the interior of a full-space (for which

case closed-form solutions exist), a set of synthetic wave

propagation records is generated. Typical features of these

synthetic records are studied in Chapter Three.

It is also necessary to develop new methods of analysis of

the field data that make better use of all the information

contained in the wave propagation records of body waves. In this

respect, Chapter Four is devoted to the analysis of existing and

new techniques to evaluate propagation velocities from which the

elastic properties of the propagating medium can be determined.

The subjective nature of visual identifications of times of

arrivals is demonstrated, especially for wave propagation in a

medium with material damping. The cross-correlation function is

shown to be an excellent method for determining elastic constants. d

Finally spectral analysis techniques based in cross spectrum and

transfer functions are shown to be excellent tools to determine

elastic wave propagation velocities if properly applied. Care must

be taken not to use in the near field.

A technique to estimate material damping is presented in

Chapter Five. The technique is based in spectral analysis methods

and although is at a preliminary phase of development seems to hold

promise in the field determination of material damping.

A summary of this work, conclusions and recommendations are

then presented in Chapter Six.

- ..- '.



CHAPTER TWO

ANALYTICAL FORMULATION FOR BODY

WAVES IN A FULL SPACE

2.1 INRODUCTON

In the crosshole and downhole seismic methods, body waves

(longitudinal and shear waves) are generated by a source at one

point and monitored at one or more other points as the waves pass

these points. Direct as well as reflected and refracted waves are

recorded by the receivers. It is assumed, however, in most of the

analyses performed of the wave propagation records that only direct

waves arrive at the receivers or that the effect of the reflected

and refracted waves is negligible (compared to the effect of the

direct waves). It can be assumed under these conditions that the

waves behave as propagating in a full space. Although the validity

of this assumption is questionable, it is intended (as a first step .
in the process of understanding the behavior of the waves generated

by seismic sources) to analyze wave propagation records produced by

point and line loads in the interior of a three-dimensional space.

The mathematical formulation that leads to the analytical

generation of wave propagation records in a full space is explained -

in this chapter.

13
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2.2 THEORETICAL BACKGROUND

One of several methods to study wave propagation phenomena in

a linearly elastic medium is by superposition of the response to

steady-state (or harmonic) excitations. The method, known as

Fourier superposition, Fourier synthesis or frequency domain

analysis, provides an easy way to study complicated transient

events when the solution to the steady-state problem is known.

Assume, for instance, that the solution to a harmonically vibrating

point load is known for all frequencies of vibration. Then, the

response of the medium to any transient point load excitation can

be calculated by expressing the load in terms of its harmonic

components, evaluating the response of the system to each

component, and superposing the harmonic solutions to obtain the

final results. If the solution to the point load is known, the

solution to loads over any area can also be obtained by integrating

the point load solutions over the area.

Superposition techniques are limited to linear systems.

Internal dissipation of energy in a truly nonlinear system is

simulated in a linear system by assuming a complex stiffness, G*,

of the form G* = G(1 + 2iD) in which G is the elastic shear modulus

of the material, i = V-1, and D is the hysteretic damping ratio.

In the following, the asterisk will be dropped from G* for

simplicity, and G will be used as a complex number when the

material exhibits a hysteretic type of damping. The notation will

be clarified at each point in the text when confusion might arise.

A hysteretic type of damping is considered, in a frequency

domain analysis, to be frequency and strain independent. While the

.. %



15

first assumption is usually true for most geotechnical materials in

the frequency ranges of interest herein (1 to looo Hz), the second

assumption is not. It has been experimentally observed that the

energy dissipated per vibration cycle can generally be considered

independent of frequency but depends on the amplitude of the

vibration. For low-strain amplitudes such as those associated with

seismic waves, however, damping can be considered to be independent 'S.

of strain (Johnston et al, 1979; Toksoz et al, 1979). The Fourier
superposition technique is, thus, an approximate method to study

waves propagating through a dissipative medium. Even for a

material with true strain and frequency independent hysteretic

damping, the solution would be approximate due to some mathematical

problems created by the fact that hysteretic damping does not

satisfy the principle of causality. The method offers, however, a

very good approximation, particularly for materials with low

damping.

Assume that the response of a medium to an excitation of the

form p(t) is desired. As a first step in the Fourier superposition

method, the function p(t) is decomposed in its different frequency

components by means of a Fourier transform, P(w), as

i4,*

P(w) = fP(t)e lwtdt (2.1)
6

where --

Pt) j P(w) etdw (2.2)

and

t is the time variable in seconds, .I

'p.

,V

' '2

S. i.* 4 . . . * . .. - .. - ?
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16

w is frequency in rad/sec,

e is the base of the natural logarithmics,

i = V-1, and
= 3.14159...

The two integrals in Eqs. 2.1 and 2.2 are known as a Fourier

transform pair. P(w) represents the harmonic components of the

loading function p(t).

The response of the medium to an excitation of the form •iWt

is defined by the Green's function or fundamental solution. The

fundamental solution gives the displacement at one point of the

medium due to a unit harmonic force applied at any other point of

the medium. If the Green's function of the problem under

consideration, H(w), is known and the superposition principle is

applied, the response of the system, u(t), to the loading function,

p(t), defined in Eq. 2.2 is then given by

u(t) L - .P(w) H(w) • dw (2.3)

This means that the response of the system to any excitation

is given by the inverse Fourier transform of the product of the

fundamental solution by the Fourier transform of the excitation.

In other words, the Fourier transform of the response, U(w), is the

product of the Fourier transform of the excitation and the Green's

function and can be written as

U(w) =P(w) H(w) (2.4)

Forward and inverse Fourier transforms can be efficiently

calculated in a digital computer by means of a Fast Fourier

% % % %0

%p.
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Transform (FFT) algorithm. Details on Fourier Transform theory and

FFT algorithms are explained in references such as Bracewell, R.N.,

1965; Brigham, E.O., 1974; and Newland, D.E., 1975.

Two- and three-dimensional wave propagation in a homogeneous,

isotropic, linearly elastic medium with or without linear

hysteretic damping is considered in this and the following two

chapters. Fundamental solutions for two-dimensional plane strain

(in-plane) and out-of-plane (antiplane) elastodynamic motion as

well as three-dimensional elastodynamic motion are presented in the

following sections.

2.2.1 Two-dimensional antiplane motion

Antiplane shear motion is illustrated in Fig. 2.1a. This

type of transverse motion (SH-motion) is characterized by particle

movement perpendicular to the plane of propagation of the wave.

The displacement caused by a unit concentrated harmonic force at a

distance r is (Achenbach, 1973)

i (2) r-"
w(W) H (2.5)

where

w is the value of the displacement,

w is the circular frequency of the vibration,

G is the complex shear modulus,

r is the distance from the source to the target point,

cs =G/p, is the shear wave velocity of the material

(complex value),

'kV
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Fig. 2.1 -Particle motion for antiplane and inpiane V

loading.
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p is the density of the material, and

Ho(2 ) is the zero order Hankel function of the second kind.

It should be noticed that the displacement, w, is a complex

value. Since this displacement is the response of the medium to a

steady-state excitation, the magnitude of the complex number

represents the amplitude of the steady-state displacement, and the

phase gives the phase difference between the excitation and the

response.

2.2.2 Two-dimensional in-plane motions

In-plane excitation leads to two kinds of motions, a

longitudinal motion and a transverse or shear motion. The

longitudinal motion (P-motion) is characterized by particle

displacement in the direction of propagation of the wave. In the

shear motion (SV-motion), particle movement is perpendicular to the

direction of wave propagation (Fig. 2.1b). These motions cause a

compression (or extension) and a shear distortion, respectively.

The displacement in the direction of the load at a point

along the line of excitation (P-motion) caused by a unit

concentrated harmonic force at a distance r is (Cruse and Rizzo,

1968)

u(w) = [1/(21PCs)] [*-x) (2.6)

where,

u is the value of the displacement,

p is the density of the material, and

and x are given by the formulas:

%%

' • #,. ,,, , .%,, . %, ,... ., ./ , - , .. ., . , . , , , ,,.. ,,, ,, .1.'
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= Ko(iao) + (1/ia o ) [Kl(ia o ) - (cs/cp)Kl(ibo)] (2.7)

x K2(iao) - (cs/cp)2 K2(ibo) (2.8)

where,

ao = wr/cS,

b0 = wr/cp,

= [(A+2G)/p] 1/2, is the compression wave velocity of the

material (complex value),

A is the complex Lame's constant, and

K0, K, and K2 are the modified Bessel functions of the second

kind and orders zero, one and two, respectively.

The displacement in the direction of the load at a point on a

line perpendicular to the direction of excitation and passing by

the point of impact (SV-motion), caused by a unit concentrated

harmonic force at a distance r is (Cruse and Rizzo, 1968)

v(w) = [1/(2rpcs)) (2.9)

where,

v is the value of the displacement, and

is defined in Eq. 2.7.

2.2.3 Three-dimensional notions

The three-dimensional notation is illustrated in Fig. 2.2.

The fundamental solution for longitudinal motion (P-motion) is

defined by

2
u(w) [1I(4ffpcs ][r-E] (2.10)

% %s
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and the fundamental solution for shear motion (S-motion) is

v(w) [1/(4rpcs )) • r (2.11)

where r and are given by

r = {[l+(1/iao) - (1/ao) 2/r} e- iao

2 2 -i- (cs/cp) {[(1/ib o ) - (1/bo) ]/r} eibo (2.12)

= [i + 3(1/iao) - 3(1/ao) 2]/r} e iao

- (Cs/Cp)2 {[ + 3(1/ib o o) ]/r b e 0  (2.13)

2.3 TIME AND FREQUENCY DOMIN PARAMETERS

The loading function considered in this study is one cycle of

a sine wave of amplitude F and period Ts as illustrated in Fig.

2.3. The amplitude F has a value of one unit and the duration of

the impulse, Ts, is one second. The material considered as the

medium of propagation has a shear wave velocity of 100 units and a

mass density of 3.1 units. Note that no specific units are needed

(except for the time). If a specific set of units was to be used,

then all units would have to be compatible. For instance if forces

are expressed in lbs, and the wave velocities in ft/sec, then the

mass density should be in lb-sec2/ft4 and so on. If the density

was set in kg/m 3, then velocities should be in m/sec and forces in

Newtons. The results are presented in dimensionless form, in most

of the cases. Therefore, the actual magnitude of the force used,

%1 % ' lop,
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the value of the shear wave velocity or the duration of the impulse

are irrelevant when presenting the results.

The fast Fourier transform parameters used in this study are

a sampling rate, At = 0.01 sec, and a total number of sampling

points, N = 1024. (A few studies were done with, at = 0.05 sec and

N = 512, when the target point was far from the source). In

choosing these parameters, the following conditions were

considered:

a) The sampling time, At, should be small enough: 1. to

reproduce accurately the loading and response functions, and 2. to

allow a sufficiently high maximum frequency, fmax to be obtained.

b) The total duration of the function to transform, Tp,

should be long enough: 1. to minimize the effects of the

periodicity inherent in the FFT algorithm, 2. to cover the time

range of interest, and 3. to produce a small frequency domain .

sampling rate, af.

A singularity occurs in the fundamental solutions at zero

frequency (Eqs. 2.5 through 2.13). In the present study, this

singularity was avoided using the fundamental solution at a

frequency equal to Af/lO as the solution for the static case.

The studies presented in this chapter and in the following

chapters have been conducted from records of particle displacement

with time. Similar studies could have been performed from time

histories of particle velocity or acceleration, but trends are i

easier to identify from waveforms of particle displacement than

from records of particle velocity or acceleration. As an

illustration, displacement, velocity and acceleration records for

the five cases of motion considered in this report (two-dimensional U
P-, SV- and SH-motions and three-dimensional P- and S-motions) are

%' N
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presented in Figs. 2.4 through 2.8. The notation used in these

figures is the following:

u is particle displacement,
v is particle velocity,
a is particle acceleration,

G is shear modulus of the material (real value),

F is amplitude of loading force,

cs is shear wave velocity (real value),

t is time in seconds,

d is distance from the source to the target point,

= s . Ts ("wavelength of loading function", not to be

confused with Lame's constant),

D is damping ratio in percent, and

v is Poisson's ratio.

Velocity or acceleration records can be obtained from

Velocity or acceleration fundamental solutions, or by

differentiating the displacement records. All velocity and

acceleration records in this study were obtained by using

fundamental solutions of velocity or acceleration.

It can be observed in Figs. 2.4 through 2.8 that the velocity

and acceleration waveforms are more complex than the displacement

records. Even the simple case of the two-dimensional (2-D)

SH-motion in Fig. 2.6 seems easier to understand in terms of

displacement than in terms of velocity or acceleration. A further

study of the displacement waveforms is done in the following

chapters.

I7.
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2.4 SUMARY

Analytical formulations to compute wave propagation records

of displacement, velocity or acceleration generated by a point load

in the interior of two- or three-dimensional, isotropic,

homogeneous, elastic full-spaces has been presented in this

chapter. The formulations are based on Fourier synthesis of the
Green's functions. The loading conditions and fast Fourier

transform parameters used in the computations for the examples

shown in the next two chapters are given in Section 2.3.
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CHAPTER THREE

CHARACTERISTICS OF BODY WAVE

SIGNATURES

3.1 INTRODUCTION

Evaluation of in situ soil properties and site

characterization from wave propagation records is gaining

acceptance in engineering practice. However, the level of use is

very superficial because the understanding of the wave record is

basically limited to "first-arrival" determinations. In some cases

estimation of the "apparent" wave arrival may even lead to k
erroneous values of elastic moduli. A better understanding of the

waveforms, the effect of different parameters on the time of

arrival of the waves and a better use of all the information

provided by the wave record is necessary for a more efficient use
F of seismic methods. A series of analytical studies on the time

histories of body wave signatures is presented in the following

sections.

3.2 ANALYSIS OF TIME RECORDS

Waveforms obtained in the time domain at a dimensionless

distance, d/X = 2 are presented in Figs. 3.1 through 3.10 for

different kinds of body wave motion (where d is the distance from
the point source to the receiver and A = cs • Ts is the"wavelength of the loading function"). All results are presented

33
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in dimensionless form. The wave amplitude is presented as a

dimensionless displacement uG/F for the two-dimensional cases

(since the force F is per unit length), and as uXG/F for the three-

dimensional cases (point forces). The time is presented in

dimensionless form as cst/d. In this way, the theoretical time of

arrival of the shear wave controlled by the elastic stiffness,

ts = d/cs, always corresponds to a value of one, and the

theoretical time of arrival of the longitudinal wave, t p d/cp,

corresponds to

cs • tp/d = cs/cp = [(1-2v)/(2-2v)] 1/2  (3.1)

which depends on the value of Poisson's ratio, v. For most figures

presented in this chapter, a value of 0.25 was used for Poisson's

ratio. This ratio results in a theoretical arrival time of the P-

wave of 0.577. Also, in these expressions and in all figures

presented in this and other chapters, G, cs and cp represent the

real values of the shear modulus, shear wave velocity and I
compressional wave velocity, respectively.

3.2.1 Medium with no material damping I
The waveforms presented in Fig. 3.1 correspond to two-

dimensional in-plane longitudinal motion. Consider the upper part

of the figure which corresponds to a wave travelling in a medium U
with no material damping. The trace shown is composed of three S

basic parts. The first part on the left of the trace represents a

quiet zone. This results from the fact that the impulse has been

applied at the excitation point, but no energy has yet arrived at I
the target point. The second part, starting at the point indicated
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by the solid arrow, includes a big excursion of the wave and lasts

until a second excursion arrives at a dimensionless time of one,

where the third part of the trace begins. The point where the wave

arrives corresponds to a dimensionless time cst/d = 0.577. This

time coincides precisely with the time of arrival of a wave

traveling at the compressional wave velocity in a medium with

Poisson's ratio equal to 0.25 (as used in this case). The second

part of the wave (third part of the trace), starting at the point

denoted by the dashed arrow, arrives at a dimensionless time equal

to one, meaning that it is traveling at the shear wave velocity.

Hence, the first part of the waveform is called the primary wave

(P-wave), because it arrives first, and is denoted by the symbol Lp

for reasons that will become obvious soon. The second part of the

waveform is called the secondary wave, because it arrives second,

and is denoted by LSV. It should be noticed that even though the

second part of the wave is traveling at the shear wave velocity, it

does not represent a shear motion. This second part of the wave is

actually a longitudinal motion (compression and extension) since

the particle motion is in the direction of propagation of the wave.

This second part of the waveform is called the near-field wave (or

additional near-field wave) of the P-motion and is discussed in

later sections.

A second set of records, similar to those presented in

Fig. 3.1 for two-dimensional P-motion, is presented in Fig. 3.2 for

two-dimensional SV-motion. Consider again the wave propagating in

a medium with no material damping (upper trace). After a quiet

period, a perturbation arrives at the target point. This arrival,

indicated in the figure by the dotted arrow, comes at a time

corresponding to the compressional wave velocity (cst/d = 0.577). I
The second and main part of the wave arrives at a dimensionless

time equal to one (corresponding to the shear wave velocity).

% % % "%
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Again, the first wave arrival (between the two arrows) is called

the P-wave, because it arrives first (primary), but is denoted by

Tp, because it represents a transverse or shear motion. The second

part (starting at the point indicated by the solid arrow) is called

the S-wave (or SV-wave) and is denoted by TSV. The P-wave

(additional near-field in this case) represents that part of the

energy transmitted at the compressional wave velocity, and the

S-wave represents that part of the energy transmitted at the shear

wave velocity (although in both cases the motion is in the same

direction). Note that, in general, when P-motion (longitudinal

motion) is being measured, as in the case in Fig. 3.1, most of the

energy is carried by the P-wave, Lp, (indicated by the large

amplitude excursion of this wave). On the other hand, when shear

motion is being monitored, the bulk of the energy is transmitted by
the shear wave, TSV (Fig. 3.2). This is true at distances that are

far from the source (which d/x = 2 corresponds to). When the

receiver is located near the source, the additional near-field wave

may carry as much energy as the other wave. Records of waveforms .

monitored at other distances are presented in Figs. A.1 through

A.4. Notice that, in these figures, the wavelength is constant

from one graph to the next. Because the horizontal axis is

normalized with respect to the distance from the source to the

receiver and this distance varies from one graph to the other, the

horizontal scale is changing giving the impression that the

wavelength is varying.

Two-dimensional SH-motion at a point located at a distance I
d/A = 2 from the source is shown in Fig. 3.3. This kind of motion S

is characterized by a pure shear wave. All energy is transmitted

at the shear wave velocity as can be observed in the upper trace of

Fig. 3.3. SH-motion will help clarify certain topics in the

following sections. But for the moment, notice that there is no

w- '-P.% % %--op
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P-wave energy coupled with the SH-motion. Additional antiplane

motion (SH-motion) records of wave propagation in a medium with no

material damping are included in Figs. A.5 and A.6.

Three-dimensional motion is presented in Figs. 3.4 and 3.5.

The same conclusions drawn for the two-dimensional motions apply to

the three-dimensional case. The secondary wave arriving at a

dimensionless time of one in Fig. 3.4 does not present a clear

arrival. This is due to the coupling of the primary and secondary

waves which distorts the shape of the waves. Actually the sharp

angle in Fig. 3.4 is caused by the P-wave energy terminating at

that point and not to the arrival of the S-wave energy. It should

also be noticed that, in the three-dimensional case, there is no

pure S-wave. This occurs because of the inherent coupling between

P- and S-waves generated by the point source. Records of waveforms

monitored at other distances are presented in Appendix A (Figs. A.7

through A.1O). A look at these records further clarifies the

topic.

A first conclusion can be reached at this point. If

compression wave velocity is to be determined from wave propagation

records, it is easier and more accurate to measure the time of

arrival from records of P-motion than from records of S-motion.

Similar conclusions can be made with respect to shear wave

velocity. In terms of practical application, this conclusion means

that three-dimensional sensors oriented along the directions of ii
particle motions must be used in seismic testing to obtain the most

precision. S
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3.2.2 Medium with material damping

Records of wave propagation in a medium with no material i
damping have been considered so far. In the lower traces of

Figs. 3.1 through 3.5 and in Figs. A.11 through A.20, synthetic

records of waves propagating in a medium with five percent material

damping are presented. It can be observed in these figures that

the general shape of the waveforms remains the same as those for

waves propagating in a medium with no damping. Both primary and

secondary waves are encountered in two-dimensional P- and

SV-motions as well as in three-dimensional motions; and a pure

shear wave is encountered in only two-dimensional SH-motion. It is

further observed that the amplitude of the waves has decreased

compared to the amplitude of the waves in a material without

damping; but the most important fact is that the time of arrival is

no longer easy to identify. The arrival of the wave is not marked

by a sudden change of slope, as in the case with no damping, but is

represented by a smooth change.

It has been noted that for real materials, the time of

arrival chosen depends many times on the amplification applied to

the time history record (Ricker, 1953; Hoar and Stokoe, 1978). The I
higher the amplification, the sooner the waves seem to arrive. The

synthetic records shown in Figs. 3.1 through 3.5 and A.11 through

A.20 clearly exhibit this point. It is also observed in the

synthetic records that the waves arrive earlier than the arrival ,11

times calculated from the theoretical velocities of propagation, cs
or cp (cs and cp being the real values). The theoretical

propagation velocities (csD and cpD) caused by the use of complex

shear and compressional wave velocities (cs* = cs + icsl and

cp* cp + icpl) are

.',.. ii
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Cp D :[Cp 2 + (Cpl)2]/Cp (3.1)

and

cs = [Cs2 + (Csl) 2]/cs (3.2)

in which

Cpl and CsI are the imaginary parts of the complex

velocities, and

CpD and csD are the damped propagation velocities.

The damped velocities, cp0 and csD, are practically identical

to cs and cp, respectively (with differences smaller than 0.25

percent for values of the damping ratio smaller than five percent).

A discussion and derivation of the relationships between elastic

and damped body wave velocities and moduli is presented in Appendix

B.

The theoretical times of arrival (t = d/cs, or t = d/cp) are -

marked with arrows in Figs. 3.1 through 3.5. Times obtained from

the first arrival of the wave will lead to estimates of the shear

or compression wave velocities of the medium which are slightly too

high. This "sooner" arrival of the waves is a problem encountered

in the field and should always be kept in mind when analyzing real

time records. Other approaches that eliminate the uncertainty in

the arrival-time estimation are presented in the next chapter. ]
3.2.3 Effect of Poisson's ratio

Finally the effect of Poisson's ratio, v, is studied in

Figs. 3.6 through 3.10. In the upper part of these figures are the

records of waves propagating in a medium with a low Poisson's ratio

% V
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(v = POI = 0.25) and in the lower part are corresponding waves in a

medium with a higher Poisson's ratio (v = POI = 0.4). All the

results are for a material with no damping.

The first observation that can be made is that Poisson's

ratio does not affect the secondary wave characteristics.

Secondly, the P-wave velocity increases as v increases. According

to Eq. 3.1 the dimensionless time of arrival for a Poisson's ratio

of 0.4 should be 0.408 as is the case. Finally it can be observed

that, due to the higher stiffness, the amplitude of the P-waves V

decrease with increasing Poisson's ratio. A complete set of

records at other distances from the source is given in Appendix A.

3.3 NEAR-FIELD EFFECTS

It was indicated in the previous section that, in all the

motion records except for those of two-dimensional SH-motion, two

types of waves appeared in the waveform, one travelling at the

longitudinal wave velocity (P-wave) and the other travelling at the

shear wave velocity (S-wave). If one inspects the time history

records of longitudinal motion at different distances from the

source (presented in Appendix A), it can be observed that the

amplitude of the secondary wave (Lsv) in these P-motion records is_

attenuating at a much faster rate than the main event (the P-wave).

At a certain distance from the source, the amplitude of the S-wave

(Lsv-wave) becomes insignificant compared with the amplitude of the

P-wave (Lp-wave). Therefore, the S-wave (Lsv-wave) in a pure

longitudinal-motion (P-motion) record (no shear motion) only
"exists" at distances that are close to the source and is commonly

referred to as the additional near-field wave or near-field wave

(Aki and Richards, 1980; White, 1983).
-% IlN
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Similarly, in a shear motion (transverse motion) record,

there are two events present: one travelling at the compressional

wave velocity (a P-wave, Tp) and a second travelling at the shear

wave velocity (Tsv). The first event (Tp) is, in this case, the

one that decays at a faster rate and represents the additional

near-field effect.

To illustrate this point, consider the case of three-

dimensional shear-motion in Eqs. 2.11 and 2.12. The first

exponential in Eq. 2.12 represents a wave that is propagating at
the shear wave velocity, cs, (e-iao 

i t = eiw[(r/cs)-t) while

the second exponential is a wave propagating at the compressional

wave velocity, cp. The amplitude of the wave travelling at the

shear wave velocity is composed of terms that vary with 1/r, 1/r2

and 1/r3 , whereas the amplitude of the wave propagating at the .1

compressional wave velocity has terms varying at 1/r2 and 1/r3 .

Therefore, at large distances from the source (large r's), the

controlling term is that attenuating at a rate 1/r. This term is

usually called the far-field term, since it is the only one

existing at far distances from the point of excitation. The other

terms, those propagating at the shear and compression wave

velocities are called the additional near-field terms (or near-

field terms). Notice that the wave travelling at the shear wave

velocity also has near-field terms. However, since these

components are travelling with the far-field component, they are

undistinguishable in the wave record, and the term near-field is

usually applied only to the components of the P-wave. An analogous

reasoning can be made for the three-dimensional longitudinal-motion '.A

and for the two-dimensional motions. Further illustrations are

given in Section 3.5.

....... °'..,.
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In summary, when monitoring a pure longitudinal-motion (P-

motion), the P-wave represents the main event called the far-field

effect, and the S-wave represents the near-field effect. When

exciting a pure shear motion (S-motion), the S-wave is the main

event (far-field effect) and the P-wave is composed only of near-

field terms.

3.4 POLARITY REVERSALS UPON REVERSING THE IMPULSE

It should be noted that when the direction of the impulse is

reversed, both near- and far-field terms change polarity. However,

when measuring transverse motion in crosshole and downhole tests,

it is frequently found that S-waves change polarity but P-waves

keep the same polarity when the direction of the impulse is

reversed. To explain this behavior, several conditions should be

considered. First, to generate a shear motion (transverse motion)

with a crosshole source, a vertical impulse is applied to the

source. Since the source is of finite length and is usually wedged

in a borehole when the vertical impulse is applied, a longitudinal

motion is generated along with the shear motion. Second, when

reversing the direction of the vertical impulse, the direction of

the transverse motton is reversed, but the direction of the

longitudinal motion remains the same.

For the conditions cited above, a receiver will only monitor

the transverse motion and will not record any of the longitudinal

motion if the receiver used to record the transverse motion is -

placed in a perfect vertical position (perpendicular to the

direction of propagation) . Under these conditions, the P-wave

recorded at the vertical receiver will be exclusively produced by

near-field terms of the transverse motion. Therefore, when the

-.;

p. - 0 0 q-- * %* g % % - % %. -.
,,* p...- . . V. -'.....,-" '-'' .
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direction of the impulse is reversed, both P- and S-waves should

reverse polarity. However, when placing "vertical" receivers in

the field, the receivers are very seldom in a perfect vertical

position, and they are most commonly imperfect receivers. (They

exhibit some cross-sensitivity.) The small inclination of the

receiver and/or the small cross-sensitivity present in receivers

will allow the recording of a small component of the longitudinal

motion. The waveform record will then be composed of both S- and

P-motions with their corresponding near- and far-field terms. When

the direction of the impulse is reversed, the transverse motion

reverses but not the longitudinal motion. Therefore, unless the

near-field wave associated with the transverse motion recorded is

larger than the far-field component of the part of the longitudinal

motion recorded by the receiver, the polarity of the P-wave will

not change.

To illustrate this point, longitudinal- and transverse-motion

records produced by horizontal and vertical point loads applied at

a distance of two wavelengths from the source are presented in

Fig. 3.11 as recorded by a perfect vertical receiver (zero cross-

sensitivity and perfect vertical orientation, 0 = 0 degrees). Time

histories of forward and reversed vertical impulses as monitored by

the perfect vertical receiver are shown in Fig. 3.12. It can be

observed that the P-wave is exclusively composed of the near-field

effect in the transverse-motion record and that both traces are

opposite (reversed) but otherwise identical. The case of a

receiver which is inclined 30 degrees (0 = 30 degrees, roe

illustration purposes in which part of the inclination could

correspond to cross-sensitivity effects) with the vertical is

considered in Fig. 3.13. The lower trace in this figure is

composed of seven-tenths of the shear motion produced by the direct

impulse and by half of the longitudinal motion. In the upper
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trace, that corresponds to the reverse impulse, the shear motion

has reversed but the longitudinal motion has remained with the same

sign. Since one half of the P-motion carried more P-wave energy

than seven-tenths of the S-motion record, the combined waveform

resulted in initial P-waves that did not reverse polarity when the

direction of the impulse was reversed.

A similar line of reasoning can be used when the source and

receiver are not at the same depth for a crosshole test, or for

other cases in a downhole test.

3.5 WAVE AMPLITUDE DECAY

The amplitudes of seismic waves decrease as the waves

propagate through a medium. This decay of wave amplitude is caused

by two mechanisms: 1) spreading of wave energy from a source,

generally called geometrical or radiational damping, and 2)

dissipation of elastic energy due to primarily frictional losses in

the material itself, commonly known as attenuation, material or

internal damping.

Records of displacement with time at different distances from

the source are presented in dimensionless form in Appendix A. The

records are for two- and three-dimensional wave propagation in

media with material damping of 0 or 5 percent and Poisson's ratio

of 0.25 or 0.4. The input to the medium is one cycle of a sine

wave, as described in Section 2.3, and the parameters used in these

figures are the same as those described in Section 3.2.

Two-dimensional motion in a medium with no damping and

Poisson's ratio of 0.25 is shown in Figs. A.1 through A.6. It can
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be observed that for motions in which the primary and secondary

waves are coupled, the coupling occurs mainly at short distances

from the source (d/A < 2). At larger distances, the P-wave has

separated from the S-wave, and the two waves can be clearly

distinguished from each other. The minor wave (S-wave in the case

of P-motion and P-wave in the case of SV-motion) attenuates at a

faster rate than the major wave. These minor waves, the additional

near-field waves, only exist at short distances from the source.

It should be noticed, however, that at short distances the energy

carried by the near-field terms can be a substantial amount of the

total energy in the waveform. Wave amplitude decay in these

figures is due exclusively to radiation damping, since material

damping, D, is zero.

A similar situation arises for motions in a three-dimensional

full-space (Figs. A.7 through A.10). However, the amplitude of the V.

waves decreases much faster than in the two-dimensional cases.

This faster decay is due to the spreading of the energy from a

point source in a spherical pattern while in the two-dimensional

case the energy spreads in a cylindrical pattern from a line

source.

.9

Motion in a medium with five percent material damping is

presented in Figs. A.11 through A.20. The behavior is similar to

that in the medium with no material damping but amplitudes are

decreasing with distance at a faster rate due to the energy lost in

each cycle because of internal friction.

Finally a set of records corresponding to propagation in a

medium with no damping and a Poisson's ratio of 0.4 is presented in

Figs. A.21 through A.28. The behavior is similar to that described

when Poisson's ratio was 0.25. The amplitude of the P-wave

%. "



59

component of the motion is, however, smaller when Poisson's ratio

is 0.4. No records are included for SH-motion since they are the

same as those when Poisson's ratio is 0.25.

To study the attenuation behavior of body wave amplitude with

distance due to radiation damping, the variation of wave amplitude

with distance for steady-state motion has been plotted in

Figs. 3.14 through 3.18. In these figures the displacement

amplitude is normalized as uG/F for two-dimensional motions and as

uAG/F for three-dimensional motions (as in the figures in Appendix

A), and the distance from the steady-state source to the receiver

(d) is normalized by dividing by the wavelength of the shear wave

(A = cs/f). The material considered as the propagating medium has

a Poisson's ratio of 0.25 and no material damping. (The rest of

the parameters are explained in Section 2.3). A frequency of

100 Hz was used for the computations.

The amplitude decay for a two-dimensional event is shown in

Figs. 3.14, 3.15 and 3.16 for P-, SV- and SH-motions, respectively.

It is observed that the general trend indicates that the amplitudes

decay with the square root of the distance. This is particularly V

clear in Fig. 3.16 for SH-motion amplitude decay. For very small

distances or very low frequencies (d/A < 0.2), all wave amplitudes

decay at a rate that is slightly smaller than with the square root

of the distance. For P- and SV-motion the amplitude decrease is in

proportion with the square root of the distance only at long

distances. The value of this "long distance" seems to be of the

order of two or three shear wavelengths (A) for the shear motion

and ten shear wavelengths for the longitudinal motion. (This

distance translates to approximately five compression wavelengths).

In the range of distances where the coupling of the P- and S-wave

~V



60 
j

600

U)
C do

2%

0

C

t-C ;
0

1<1

0 >1

zz Co 0

CL 0.E c

O- ..-. 4.Lj O -O - Ls O

@1JON



61

00

a 
A'1.

0 4,

_) 0

o A-e

Mao a'6U1-I L.A

Ot O L LOL IOt -OL .OL9-C

CY



62A

0

rC c
T1

do

CL

301-

L - t it &&I sea a " is0 t 0 Lt-OLa-OLc-OLv-OLs-I
na

"b NOil P
11<



63

00

06C

I-1

iv 0

3<

. - .. . .



64

v, a revsv v Fvv v ww- ig, v

00

o cI

%~ %



65

is important, the decay in amplitude is not proportional to the

square root of the distance.

Three-dimensional wave-amplitude decay due to radiation is

shown in Figs. 3.17 and 3.18. It can be observed that the general

trend indicates that the amplitudes decay proportionally to the

distance. The relation is valid, again, for long distances where
the coupling of the P- and S-waves is almost insignificant. A

further look at these figures indicates that at very short

distances from the source, the decay is also proportional to the

distance and that it is only in certain ranges of d/x where the

amplitudes of the waves do not decrease in proportion to the

distance. A close inspection of Eqs. 2.10 through 2.13 indicates

that the amplitude of the three-dimensional waves is formed by

terms that decrease in proportion with the distance, the square of

the distance and the cube of the distance. In the far field, the

only significant terms are the far-field terms that decrease in

proportion to the distance. In a mid-range of distances (say,

1 < d/A < 10), the decay is a combination of terms that decay in

proportion to the distance, the square of the distance and the cube

of the distance. Thus, the oscillating behavior of the decay

curves in this mid-range of distances. Finally, in the very near

field (d/X on the order of tenths or less), the terms that decay in

proportion with the square of the distance and the cube of distance

essentially cancel, and amplitude decay is again nearly

proportional to the distance.

Wave amplitude decay graphs for waves propagating in mediums

with two and five percent material damping are presented in Figs.

3.19 through 3.23 and Figs. 3.24 through 3.28, respectively. It is

noticeable in these figures that, at large distances (d/x greater

than about two), the amplitudes of the waves are decreasing at a

N %
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much faster rate than when the waves were propagating in a medium

with no material damping. At short distances, the waves have gone

through very few cycles of motion (if any), and the effect of

material damping has had a very minor influence. For this reason

the amplitudes in the short range of distances are practically the I,.

same as when no damping was considered.

3.6 SUMARY

Waveforms of particle displacement of body waves produced by

line loads in a three-dimensional space (in-plane and antiplane

point loads in two-dimensional notation) and by point loads also in V

a three-dimensional space have been analyzed in this chapter. From k .

examination of these syntheti.c records, the following conclusions -V.

can be drawn.

1. The most precise evaluation of P- or S-wave velocities

is obtained with receivers aligned parallel to the direction of

particle motion. If the receivers are inclined, wave arrivals are

more difficult to identify because of the additional coupling

between waves. This conclusion is especially true for the S-wave,

the one of most concern in geotechnical engineering applications.

2. When the material in which the body waves propagate

presents a dissipative behavior (as represented by a hysteretic

type of damping), it is more difficult to estimate the time of

arrival of the waves than when the material is not dissipative. In

those cases, the apparent time of arrival of the wave is very much

influenced by the amplification applied to the wave record. The

higher the amplification, the sooner the wave seems to arrive.

%I
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3. In all waveforms except in those for two-dimensional

SH-motions, the waveforms are composed of two types of waves, S

P-waves travelling at the compressional wave velocity and S-waves

travelling at the shear wave velocity. In a two-dimensional

in-plane transverse-motion record, the P-wave (Tp wave) only exists

at short distances from the source (distances smaller than

approximately two shear wavelengths), but the secondary wave (Tsv

wave) prevails at longer distances. It is for this reason that the

TSV wave is called the far-field wave while the Tp wave is called ".

the additional near-field wave (or near-field wave). In records of

two-dimensional in-plane longitudinal-motion, the far-field wave

corresponds to the primary wave (Lp), and the near-field wave is

the SV-wave (Lsv). In two-dimensional antiplane motion (SHmotion),

there is only one wave (TsH) which propagates at the shear wave

velocity.

4. For waves generated by a point source in a three-
'5

dimensional space, the wave fronts spread in a spherical manner

from the point source. There are, again, near- and far-field waves

both in longitudinal- and transverse-motion records. The far-field

wave in a longitudinal motion record (Lp) travels at the
N.

compressional wave velocity while the near-field wave (LS) travels

at the shear-wave velocity. In a transverse-motion record, the

far-field wave (TS) travels at the shear wave velocity while the

near-field wave (Tp) propagates at the compressional wave velocity.

The near- and far-field waves have components with amplitudes
3

varying in proportion to 1/r2 and 1/r. The far-field wave has,

in addition, terms that diminish in proportion to the distance.

Those terms with amplitudes decreasing with the square and the cube

of the distance are called the near-field components (or near-field

terms), while the terms decreasing with the distance are known as

the far-field components. The expression "near-field term" or

LIN.
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"near-field component" is sometimes applied, however, to the near-

field wave, while the expression "far-field term" or "far-field

component" is sometimes applied to the far-field wave.

5. Near-field effects in longitudinal-motion (P-motion)

records are more important than near-field effects in transverse-

motion records. In addition, near-field effects in longitudinal-

motion records last longer (to distances of about ten times the

shear wavelength) than near-field effects in transverse-motion

records (to distances of about two shear wavelengths).

6. Wave polarity reversals, which are frequently

encountered in the field upon reversing the direction of the

impulse, were explained in Section 3.4 by considering the effect of

near-field waves.

7. For a medium in which energy dissipation occurs

exclusively because of radiation damping (geometrical spreading of

the energy), it was observed that wave amplitude decreases, in

general, in proportion to the distance for point sources and in

proportion to the square root of the distance for line sources.

These general rules apply more precisely to the far-field range of

distances which is defined as those distances (or frequencies) for

which the ratio d/x is greater than two for transverse motions and

ten for longitudinal motions. For waveforms generated from a point

source, this rule of energy dissipation (radiation damping) also

applies correctly for values of d/X that are smaller than about

1/2. When internal dissipation of energy is considered by the use

of a hysteretic, frequency- and strain- independent, material 9....

damping, the amplitudes in the far-field decrease at a much faster

rate. :;Z

.1
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CHAPTER FOUR

TECHNIQUES OF EVALUATING BODY

WAVE VELOCITIES

.-

4.1 INTRODUCTION

Many of the variables that can affect in situ seismic tests

such as sources, receivers, recording equipment and triggering

devices have been studied extensively in the literature (Stokoe and

Woods, 1972; Stokoe and Hoar, 1978; Hoar, 1982; Patel, 1981) and do

not require further extensive studies. However, techniques of

determining wave velocities and attenuation have received little

attention. With the advent of digital waveform processing in the

field, several new techniques are available for velocity and

attenuation measurements. In this chapter, new techniques for

velocity measurements based on sophisticated waveform processing

and data analysis are presented along with an extensive study of

the traditional time-domain technique. Attenuation measurements

are presented in Chapter Five.

4.2 WAVE VELOCITIES FROM DIRECT TIMES OF ARRIVAL

The cheapest and most commonly used method to calculate

seismic wave velocities is by measuring the travel time of a wave

from a source point to a target point. This time is usually called

the direct travel time. By dividing the travel time into the

distance between the two points, the propagation velocity of the

79 .
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wave is obtained. Wave velocity calculations by measuring direct

travel times have been analyzed in Chapter Three (Section 3.2) and

will not be repeated herein. Suffice it to say that, even under

ideal field conditions, some judgment is required when "picking"

the wave arrival time.

4.3 WAVE VELOCITIES FROM INTERVAL TIMES OF ARRIVAL

It is common practice in the field to determine wave
velocities by monitoring the waves passing by two or more different

receivers. In such cases, the time for body waves to travel

between several points within the soil mass is measured. Use of

interval travel times between two or more receivers has the

advantage that it eliminates possible triggering errors of the

recording device and also minimizes other field errors that might

occur when measuring direct travel times from the source to the

first receiver (Hoar, 1982).

Records of wave trains monitored at dimensionless distances

d/ = 2 and d/A = 8 from the source are presented in Figs. 4.1

through 4.10 (x being the predominant shear wavelength,

A= cs  Ts). The dimensionless time is defined in these figures Iq

as cst/X, to avoid the distortion of the waves produced by the

distance (d) in the factor cst/d. All the records presented are

for waves propagating in a medium with a Poisson's ratio of 0.25.

A first approach to calculating wave velocities is by - 0

identifying the interval time between first arrivals of the wave

from the first to the second receivers. Similar approaches can be ii
used when interval velocities are calculated in which the time it ,N
takes the wave to travel from the first to the second receiver is

ON
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determined by measuring the time difference between other reference

points such as first troughs, first peaks or zero crossings. An

example of these procedures is illustrated in Fig. 4.3, for the

case of two-dimensional SH-motion in a material with no damping.

It can be observed that, since the wave does not change its shape

with distance in this case, all the approaches give the same

interval times. Similar results would be obtained from the other

records of waves propagating in a medium with no damping (Figs.

4.1, 4.2, 4.4 and 4.5). This conclusion is particularly true when

the receivers are placed in the far field. If the receivers are

located in the near field, then the coupling of near- and far-field

waves can obscured the arrival of the waves.

When the medium in which propagation occurs is composed of a

material with hysteretic damping, several problems arise. First,

times of arrival of the waves are no longer easy to identify (as

was previously noted in Section 3.2), and evaluation of interval

times from first arrivals may lead to slightly erroneous results.

In this regard, interval times from first peaks or zero crossings

might be easier to estimate. The use of first troughs can be very

troublesome for conditions in which the near-field and far-field

waves are coupled together. The first trough attributed to the

far-field wave might correspond or be obscured by the near-field

wave, as could happen in cases similar to those in Figs. 4.6 and

4.9. A second problem arises from the fact that the shape of the

waves vary-with distance as shown in Figs. 4.6 through 4.10. This

may lead to interval velocities that depend on the relative

distance between the recording points. The change in shape is

principally caused by the fact that the two components of the

waveform (the P-wave and the S- wave) are traveling at different

speeds. Therefore, short distances from the source (near field),

the P- and S-waves are still coupled, and the combined wave can

,,o o ..... . .
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have a very irregular shape. In the far field, the P-wave, which

is traveling faster than the S-wave, arrives much earlier, and the

displacements caused by both waves do not interfere with each

other. In addition, in the far field, the near-field components

have disappeared.

In Fig. 4.8, possible points to use for interval time

measurements are indicated with arrows. It is clear that choosing

the points is a subjective matter (especially the ones

corresponding to times of the initial arrival). Even for a simple

case like Fig. 4.8 (SH-motion), the choice is not clear. The

dimensionless interval times obtained from first arrivals, first

peaks and first zero crossings are 5.7, 5.9 and 6.1, respectively,

compared to the theoretical value of 6.0. In his field research

with the crosshole method, Hoar (1982) has experimentally shown a

similar relationship between travel times.

It should be noted that the conclusions drawn here for the ,

first peak of a wave whose first excursion goes up, will correspond

to the first trough of a wave whose first excursion goes down.

4.4 WAVE VELOCITIES FROM CROSS-CORRELATION RECORDS .

4.4.1 Cross-correlation function

A different technique to calculate wave velocities from

seismic records is based on the cross-correlation function of waves

traveling by two receivers. Cross-correlation, CR(t), of two

functions, g(t) and h(t), is given by the integral:

I el

% %-



93

CR(T) f_:g(t) h(t+t) dt (4.1)

where g(t) and h(t) represent the time records of the waves passing

by the first and second receivers, T is the time delay and t is the

variable of integration.

To interpret this integral, assume the second wave is shifted

by a time T. The sum of the products at each point of the shifted-

second wave by the first wave will give one value of the cross-

correlation function at time shift t. If the process is repeated

for other time shifts, the cross-correlation function is defined.

Assume now that the two functions to be correlated are the same (in -

terms of the shape of the amplitude versus time function) but that

one lags the other by a time t*. Then the cross-correlation

function will exhibit a maximum at a value of T equal to t*. If

these two shifted but otherwise identical functions represent the

waveforms recorded at two receivers of a seismic array, the time t*

where the peak of the cross-correlation occurs represents the time

it takes the wave to travel between the two receivers.

Unfortunately this idealization does not occur exactly in reality

because body waves change shape as they travel in the medium.

Nevertheless, when cross-correlating waves from two seismic records

that contain energy from predominately one type of body wave, a

maximum in the correlation function will occur at a time that

corresponds approximately with the time it takes the predominate

body wave to travel between the two receivers. If the distance '
between the two receivers is divided by this time, a shear or

compression wave velocity is obtained. .

I
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4.4.2 Analysis of cross-correlation records

Cross-correlation functions of some of the records presented

in Chapter Three are shown in Figs. 4.11 through 4.20 and in the

figures in Appendix C. Two geophone spacings were considered. In

the first case, the receivers were located in the near field

(d/X2), Figs. 4.11 through 4.15 and Figs. C.1 through C.10. In

the second case, the receivers were located in the far field, Figs.

4.16 through 4.20 and Figs. C.11 through C.20. The ratio of the

distance from the source to the first receiver to the distance from

the source to the second receiver, d2/d1 , was equal to 2, which is

common practice for crosshole seismic measurements (ASTM, 1985).

Values of Poisson's ratio (v = POI.R. in the figures) of 0.25 and

0.4 were considered, and damping ratios (D) of 0 and 5 percent were

used. The cross-correlation function is presented in dimensionless

form by means of a normalized cross-correlation factor. The

normalized cross-correlation is defined as the ratio of the value

of the cross-correlation at any time delay to the maximum absolute

cross-correlation value. The time delay is presented in

dimensionless form as cst/(d2-dl), where t represents the time

delay. In this way the shear wave velocity of the material would

correspond to a value of the abscissa equal to 1, while the

compression wave velocity would correspond to values of 0.577 and

0.408 for Poisson's ratios of 0.25 and 0.4, respectively. The

cross-correlation records are presented for two-dimensional, P-,

SV- and SH-motions as well as three-dimensional, P- and S-motions.

From inspection of the cross-correlation records, the

following conclusions can be made. AO
1. The cross-correlation function provides an easy and

accurate method to calculate wave velocities from these synthetic I
seismic records. As such, the procedure represents a powerful tool

!S
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because it has the potential for full automation. However, a key

aspect to application of this method is generation and recording of

seismic waves of predominately one type (P or S).

2. Velocities calculated with the cross-correlation

function are, in general, as accurate as (or more accurate than)

those determined using times of arrival or interval times from time

histories. Travel times obtained from the maximum of the

cross-correlation function were in almost every case within one or

two percent of the exact value. Interval travel times obtained in

this manner have the following important characteristics: they are

unique values; they are not subject to interpretation as are the

times of arrival of the waves; and they are not affected or are

only slightly affected by the value of the damping ratio.

3. The cross-correlation method can be used with .

confidence when the receivers are located in the far field. In the

near field, the compression wave velocities obtained from

longitudinal-motion records on materials with high values of

Poisson's ratio require careful interpretation (as in the case in

Fig. C.9 where the peak of the cross-correlation function

corresponds to the value of the shear wave velocity instead of the

value of the compression wave velocity as would be expected from a

longitudinal-motion record).

-

These conclusions apply to the "clean" time histories shown

in Appendix A. For actual seismic records obtained in the field,

the cross-correlation curves may be not be as simple as those

presented here. In those complicated cases, however, the time

histories will be complex as well and the estimation of the times

of arrival will also present some difficulties. A practical '

application of the cross-correlation technique to actual crosshole "

field tests can be found in Stokoe et al (1985).

..
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4.5 WAVE VELOCITIES USING SPECTRAL ANALYSIS TECHNIQUES

4.5.1 Theoretical background

In recent years great improvements have been achieved in

electronic equipment to monitor the response of dynamic systems.

The development of microprocessors and computational algorithms has

significantly increased the capability of the instrumentation for

recording, measuring and analyzing systems in both time and

frequency domains. Recording and analysis of signals can be easily e

and rapidly done in the field with modern spectral analyzers.

Frequency domain analyses have several advantages. First,

trends that might be difficult to identify in the time domain can

be easily studied in the frequency domain. Second, operations with

signals in the time domain (such as integration or differentiation)

can be greatly simplified if done in the frequency domain. Third,

frequency domain techniques allow full automation of data

reduction. Finally, averaging of signals, which requires extreme

care in the time domain, is easily done in the frequency domain.

The spectrum of a signal is a representation of that signal

in terms of its frequency components. The tool used to transform a

signal from its time history to its frequency components is the

Fourier transform. Forward and inverse Fourier transform formulas

are given in Section 2.2, along with a brief introduction to the

Fast Fourier Transform (FFT) algorithm to compute Fourier

transforms. The FFT forms the basis for an additional method to

calculate wave velocities (compared with those presented in the

previous sections) based on the cross spectral density function (or

cross spectrum).

% %a
I-0 e-
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The cross spectrum, CS(f), of two functions, u1 (t) and u2 (t),

is defined as:

heeCS(f) = U1(f) • _Mf) (4.2)

where, 4

U1 (f) is the Fourier transform of ul(t),

U2 (f) is the Fourier transform of u2(t),

t is the time variable,

f is the frequency in Hz, and

indicates complex conjugate.

The cross spectrum is, therefore, a complex function of frequency.

Assume that the functions ul(t) and u2(t) are the time

records at two sampling points. For each frequency the phase of

the cross spectrum of ul(t) and u2(t) will give the phase

difference in radians (or degrees) of the corresponding harmonic.

Since the period (T) of that harmonic is known (T = 1/f), a travel

time between target points can be obtained for each frequency, f,

by:

t(f) = [T • s(f)]/2r = (f)/2l f (4.3) €

where,

t(f) is travel time for a given frequency, and

O(f) is the phase in radians of the cross spectrum at each

frequency.

The distance between *ne two receivers is a known parameter.

Therefore the apparent wave velocity at a given frequency is simply

calculated by:

*. - .. • . -. .. .. • , -  .
der.% e el -P
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V(f) d/t(f) (4.4)

where,

d = d2 - d1 , is the distance between target points, and

d, and d2 are the distances from the sour:e to the first and

second receiver respectively.

The term "apparent velocity" is used since it does not

represent the phase velocity of a pure plane wave because of the

interactions between near- and far-field components.

Using these formulas a curve of apparent wave velocity versus

frequency can be calculated. Such a curve is called a velocity

dispersion curve (or simply dispersion curve) in this study.

Dispersion curves are also defined by other authors as relations of

velocities with wavelengths, wave numbers or wave periods. Once

one form of the dispersion curve is known, the others can be easily

obtained since frequency, wavelength, wave number and period are .N'

related by:

wT = kL 27 (4.5) %.*JW

= 2rf (4.6) %

V(f) = Lf (4.7)

where,

is the frequency of the harmonic in rad/sec,

T Is the period in sec, '
k is the wave number, and *

L is the wavelength of the harmonic wave.

% %%- • • ..... $ %.. "- " -" -% - ~ " .. - ... "-" -" "= -% "-. ° "- ", . % " % . % "°5. * .5..
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Variables that affect apparent wave velocity are: frequency

(w or f), distance from the source to the first receiver (dl), and

distance from the source to the second receiver (d2 ), in addition
to the elastic variables. The number of variables can be reduced

if they are expressed in dimensionless form. In this study the

distance from the source to the first receiver and the frequency d
are considered in dimensionless form as dl/X, where X is the
wavelength of the shear wave (X = cs/f). The distance between the

two receivers is considered as d2/dI. The apparent velocity is

presented in non-dimensional form as V/cp for compressional

(longitudinal) motions and as V/cs for shear (transverse) motions.

The other variables studied are Poisson's ratio and damping ratio.

Any impulse can be considered as the excitation force.

However, since the only information that is needed to calculate the

dispersion curves (for this theoretical study) is the phase of the

cross spectrum, this relative phase can be calculated from the

phases of the Green's functions at the two receivers. This

calculation is very convenient because it can be done without

performing any of the Fourier transforms. To illustrate this

point, assume that the load applied at the source point is any

arbitrary function p(t) and that the Green's functions (or transfer

functions) at the two receivers (points 1 and 2) are H1(f) and

H2 (f). At each frequency the response at points 1 and 2 will be

(see Eq. 2.4)

Ul(f) P(f) HI(f) (4.8)
- •

and

U2 (f) P(f) • H2 (f) (4.9)

%0%
7 "'
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respectively. P(f) is the Fourier transform of p(t). The phase of

the cross spectrum of ul(t) and u2 (t) is then the phase of Ul(f)

minus the phase of U2(f), which in turn is the same as the phase of

Hl(f) minus the phase of H2 (f).

4.5.2 Dispersion curves from cross spectrum function

A first set of dispersion curves for two- and three-

dimensional motions are presented in Figs. 4.21 through 4.30 for a

material with a Poisson's ratio of 0.25 and no material damping.

It is first observed in Figs. 4.21 through 4.30 that the dispersion

curves depend on the relative position of the source and receivers.

For a constant ratio d2/dl, the apparent velocity fluctuates as

dl/A varies (A is the wavelength of the shear wave). This can be

interpreted as the apparent velocity varying with frequency (or

wavelength) for a given distance dj, or as the apparent velocity

varying with distance d1 , for a given frequency (or wavelength).

The fluctuations are large in the near field (small distances, dl,

or low frequencies, f) and decrease as the distance d, increases

(or the wavelength decreases).

The dispersive effect also decreases as the spacing between

the receivers increases (or as d2/dI increases). This can be

observed in Figs. 4.21 and 4.22 for two-dimensional P-motion,

Figs. 4.23 and 4.24 for two-dimensional SV-motion, Figs. 4.27 and

4.28 for three-dimensional P-motion and Figs. 4.29 and 4.30 for

three-dimensional S-motion. The dispersive effect seems to be more

important in longitudinal motions (P-motions) than in transverse

motions (S-motions).

-:I
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The nature of this dispersive behavior in the two-dimensional

P- and SV-motions and in the three-dimensional, P- and S-motions,"0

is due to the coupling between the additional near-field and the

far-field waves. As was mentioned in Chapter Three, the coupling

effect is more important in the near-field than in the far-field,

and so is the dispersive behavior. This conclusion is further

reinforced by looking at Figs. 4.25 and 4.26 in which dispersion

curves for two-dimensional SH-motions are presented. The shear

wave generated in 2-D, SH-motion is not coupled with any other type

of wave; it is a "pure shear wave." It can be observed in these

last two figures that the apparent shear wave velocity coincides

exactly with the shear wave velocity of the medium except for very

small values of dl/A. The reason why the apparent velocity at low

values of dj/X (low frequencies) is not equal to the shear wave

velocity of the medium is not entirely known. It should be

noticed, however, that the dynamic solution for the Green's -

functions does not app'v for the static case and that this solution

is probably not accurate for small frequencies.

A second set of dispersion curves is shown in Appendix D

(Figs. D.1 through D.1O). This group of dispersion curves

corresponds to waves propagating in a medium with 5 percent

material damping. It is observed that the amplitudes of the

fluctuations corresponding to P-motions have decreased slightly

when compared to the respective curves for a medium with no

material damping. This behavior is encountered in two-dimensional

as well as three-dimensional motions. For the two-dimensional

SV-motion and the three-dimensional S-motion, the fluctuations for

the material with 5 percent damping are slightly larger than for.

the material with no damping. However these differences a e so

small that the corresponding dispersion curves can be considered I
almost identical. Ila*
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The two-dimensional antiplane shear motion presents no

dispersion whether the waves propagate in a medium with no damping

(Figs. 4.25 and 4.26) or in a medium with material damping
(Pigs. D.5 and D.6). It becomes clear from Figs. D.5 and D.6 that

strain and frequency independent material damping of the hysteretic

type does not produce any dispersive effect on body waves

propagating in a linearly elastic full space.

The effect of Poisson's ratio on dispersion curves is
investigated in Figs. D.11 through D.20. In these figures are

shown the dispersion curves of waves propagating in a medium with a
Poisson's ratio of 0.4 and zero material damping. From comparison

of these figures (Figs. D.11 through D.20) with the figures

corresponding to waves propagating in a material with no damping

and Poisson's ratio value of 0.25 (Figs. 4.21 through 4.30), the

following conclusions can be drawn. First, for longitudinal motion

(two- or three-dimensional) the dispersive effect is stronger for

the waves propagating in the medium with higher Poisson's ratio.

Second, for two-dimensional, SV-motion and three-dimensional,

S-motion, the dispersive effect is more important for the waves

propagating in the medium with Poisson's ratio of 0.4 than for

those propagating in the medium with Poisson's ratio of 0.25. The

difference is almost insignificant at high frequencies (or large

values of dj/X), but at low frequencies, where the influence of the .

P-wave (near-field effect) is more important, the dispersive effect

is greater when Poisson's ratio is 0.4. Third, Poisson's ratio

does not affect the two-dimensional SH-motion dispersion curves.

This result is expected since Poisson's ratio does not affect the

two-dimensional SH-motion fundamental solution (Eq. 2.5). Finally

it should be noticed that in some of the P-motion dispersion curves

the apparent velocities fell out of the limits of the graphs and

were not included in the plots. These high velocities were

o.1
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obtained when the phase of the cross spectrum approached a value of

zero. In some cases it was found that the phase of the cross

spectrum became negative for a small range of frequencies and

resulted in negative apparent velocities.

Two conclusions can be made at this point. 1. If elastic

properties are to be back-calculated from dispersion curves it is

better to space the receivers so as to obtain a large value of

d2/d1 . Of the configurations studied so far, that corresponding to

a value of d2/dI = 4 gives dispersion curves with apparent

velocities closer to the velocities cs and cp from which the

elastic properties can be calculated. 2. The agreement between

apparent and phase velocities (cs and cp) is best for high values

of dl/A.

It is important to notice that in the previous figures the

horizontal axis, distance (or frequency), has been normalized with

respect to the wavelength of the shear wave, since it was a known

parameter for these theoretical studies. However for practical

applications, it would probably be more convenient to normalize

with respect to the wavelength of the propagating wave, L V/f.

In the field the parameters that are known are the distances (d1

and d2 ), the apparent velocities (V) and the frequency (f). It is

interesting then to know at what value of dl/L apparent velocities

and the elastic velocities of plane waves (cs and cp) become equal

so as to filter out any frequencies smaller than that corresponding

to the critical value of dl/L.

Dispersion curves that would be obtained if this new

normalization were done would be, for the case of transverse

motion, very similar to those previously presented (since in this

case V and vs are quite similar). However, curves obtained for

V... *.
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longitudinal motions would be shifted to the left by a factor of

about two. (This factor depends on the value of Poisson's ratio

and is about 1.7 for v = 0.25, about 2 for v = 0.33 and about 2.4

For v = 0.4.) To give an indication of how the new curves look,

dispersion curves obtained for three-dimensional motion in a medium

with a value of Poisson's ratio of 0.25 and no material damping

have been plotted in Figs. 4.31 and 4.32 for longitudinal motion

and Figs. 4.33 and 4.34 for shear motion.

As a practical application it can be concluded that for the

measurement of body wave velocities in which the ratio of distances

from the source to the second and to the first receivers (d2/dl) is

larger or equal to 2, the apparent compression (or shear) wave

velocity can be assumed equal to the compression (or shear) wave

velocity of the elastic medium at values of dj/L greater than 2. A

value of dl/L of one could be used without incurring any

significant errors (errors greater than about five percent).

However, when considering longitudinal-motion, dispersion curves -

produced by a point load in a medium with a high value of Poison's

ratio (Fig. 0.18) present large fluctuations and a higher value of

dl/L should be considered (of at least two). A similar problem

occurred when analyzing cross-correlation functions for these

material properties (Section 4.4.2 and Fig. C.9).

The ratio of dl/L > 1 means that since wavelength can be

expressed as

L V/f (4.10)

then

,v "

.. '.
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dl/L = dl*f/V > 1 (4.11)

Since velocity can be expressed as

V = (d2 - dl).3600 f/ (4.12)

(with 0 in degrees), then

d1 .o/360
0(d2 - d1) > 1 (4.13)

or

o/3600 > (2 - d)/dI  (4.14)

For the case of d2/d= 2, The rule means that

* > 3600 (4.15)

or the number of cycles has to be greater than one before the phase

should be used to calculate apparent wave velocities. For cases

where d2/d1 is greater than two, the limiting value of dl/L would

be smaller than one.

4.5.3 Dispersion curves from transfer functions

It is not always necessary to know the displacements

(velocities or accelerations) at two different points in order to

obtain a phase difference from which velocities can be calculated.

If one knows the transfer function of the response at one point due

..

,. , , , , , , .. ., . ., . . , . .. . .. ..... , . .. ~. .. .. . ..S . .. . . . .,
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to an input force at other point, it is possible to calculate the

phase difference between the source and receiver from the phase of

the transfer function. If displacements are being used to monitor

the response (as is the case in this theoretical study), then force

and displacements are in phase at the source and one could use

directly the phase of the transfer function of displacement due to

a force to obtain the phase difference in between source and

receiver. (For a material with damping there will be a small phase

difference in between force and displacement). In the field it is

common practice to use instrumented hammers that by means of an

accelerometer (or a load cell) attached to the head of the hammer

record the input to the system. In these cases it would be

convenient then to use accelerometers to monitor the response at

the target point so as to avoid any extraneous phase shifts

produced by using different types of sensors. If velocity

transducers are used at the target point and an accelerometer is

attached to the hammer then a correction of 90 degrees would have

to be made to account for the use of a transfer function of a

W. velocity output due to an acceleration input.

Dispersion curves obtained from the phase of the transfer

function of displacement due to a unit force (Green's function) are

presented in Figs. 4.35 through 4.39 and in Appendix 0, Figs. D.21

through D.30. Dispersion curves based on two-dimensional wave

motions for a medium with no damping and Poisson's ratio of 0.25

are presented in Figs. 4.31. 4.32 and 4.33. When compared with the

dispersion curves obtained from the phase difference at two

re ivers (Figs. 4.21 through 4.26). it can be observed tnat tre S

apparent velocities in Figs. 4.31. 4.32 and 4.33 do not give as

good an estimate of the elastic velocities. c. or cs. as tme

dispersion curves in Figs. 4.21 through 4.26 did (even at hgn

values of dl/,). The apparent velocities always inde-est'mate *me

%- %
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elastic velocities by a few percent (about five percent), but at

low values of dl/A (less than two), the velocities are

significantly underestimated.

Dispersion curves based on three-dimensional wave motions

(Figs. 4.38 and 4.39), however, give better estimates. At values

of dl/A > 2, the velocities obtained are accurate predictions of

the elastic velocities. At short values of dj/x, say one, the

transfer function gives apparent velocities that are closer to the $

elastic velocities than the velocities obtained from using the

cross spectrum information at two receivers, Figs. 4.27 through ,/.

4.30, (especially for low values of d2/dl).

In Appendix D are included the dispersion curves derived from

the transfer function approach for materials with five percent

damping and 0.25 for Poisson's ratio and zero damping and a

Poisson's ratio of 0.4, Figs. D.21 through D.25 and Figs. D.26

through D.30, respectively. The first set of curves is almost

identical to the ones with no damping (Figs. 4.35 through 4.39) and

the same comments apply. The curves corresponding to a value of

0.4 for Poisson's ratio (Figs. D.26 through 0.30) did not present

any special advantages when compared to the curves obtained from

the cross spectrum information. The poorest comparisons between

apoarent wave velocities and elastic velocities occurred for three-

dimensional P-motion in mediums with high values of Poisson's

ratio. In this case it seems better to use the phase of the cross

spectrum at two receivers with a high d2/dI ratio than to use the

phase of the transfer function at one receiver.

".

'S
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4.6 SUMMARY
.JN

Several methods to calculate body wave velocities from

seismic records have been reviewed in this chapter. The methods

include those based on the visual estimation of the time of arrival

at one receiver (direct times), those based on the visual

estimation of interval times between two receivers, those based on

the cross-correlation function, and those based on dispersion

curves obtained from the phase of the cross spectrum or transfer

function.

Visual determinations of various times of arrival of waves

are the most common methods to calculate wave velocities.

Velocities obtained from direct travel times are slightly higher

than those corresponding to the elastic constants (cs and cp).

Many times the differences depend on the individual reducing the

field data and on the amplification applied to the time signals.

These small errors can partially be reduced if interval times from

first arrivals are used, but the choice of an arrival time is still

a personal matter. This subjective evaluation of interval times

can be avoided if interval times are calculated from first peaks,

first troughs or zero crossings. The use of interval times also

eliminates possible triggering errors.

The use of the cross-correlation function to calculate wave

velocities seems to be a very valuable method. Velocities obtained

by this method were accurate representations of the elastic wave

velocities for most cases analyzed. The only erroneous results

were those corresponding to P-wave velocities obtained from

longitudinal-motion records at receivers in the near-field

(d1/X < 2, with dl being the distance from the source to the first

receiver and x the predominant shear wavelength of the time record)

,, .. ... 9.. . .. .o , ,
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of a medium with a high value of Poisson's ratio (greater than

about 0.4, Fig. C.9) . A very important advantage of the use of -.

the cross-correlation function is that calculations of wave

velocities can be easily automated with the use of a computer.

However, for the successful use of this technique ", the field, one

still has to generate and record only one predominate wave type.

The use of dispersion curves of apparent wave velocity also

turned out to be an excellent tool for evaluation of elastic wave

velocities. Apparent velocities at high values of dl/L (values in

general greater than 2) were equal to elastic wave velocities of

the material (with L being the wavelength corresponding to the

apparent wave velocity). When dispersion curves were calculated

from the cross spectrum of the signals at two receivers, it is

better to have a source-receiver configuration with high values of

d2/dI (for a fixed value of d, and with d2 being the distance from

the source to the second receiver). For a typical crosshole setup

(d2/dI = 2), the frequencies should be filtered so as to eliminate

any frequencies that give values of dl/L < 1. For cases involving -

materials with high values of Poisson's ratio (say 0.4) and when

measuring P-wave velocities from longitudinal-motion records, the

filtering criteria should be more strict, and values of dl/L > 2 U
should be used.

Wave velocities can also be evaluated from the transfer

function as discussed in Section 4.5.3. However, dispersion curves '-jI

obtained from the phase of the transfer function do not present any

particular benefit when compared to dispersion curves obtained from -

the phase information of the cross spectrum for two-dimensional

cases (line sources). For point sources (three-dimensional I

motions), apparent wave velocities obtained from the transfer 
I,_

function were good estimates of elastic wave velocities when values
* .. -

-3 ,' ;- ,, ''-TL' '- 'T.'- ;: ,; V --. '., ',': -'.*;.:." ' ''.-.'.-.'." -...:."..z.'_.'_,"- _, " ,-."%'-"-,
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of dj/L were greater than one, for all the cases but for three-

dimensional longitudinal motion in a medium with a high value of ,1

Poisson's ratio. The principal advantage of using the transfer

function is that only one receiver is needed.
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CHAPTER FIVE
U.

EVALUATION OF BODY WAVE

ATTENUATION "

5.1 INTRODUCTION

Most uses of seismic methods in engineering applications have

been to determine wave velocities. Very little effort has been

applied to the study of techniques to obtain damping values. The

main emphasis of this report is on wave velocities. However, a

preliminary analytical investigation on damping has been carried

out. A brief theoretical background of wave amplitude attenuation -

along with the description of a technique to evaluate material

damping is presented in this chapter.

5.2 THEORETICAL BACKGROUND

The amplitudes of seismic waves decrease as the waves

propagate through a medium. This attenuation of wave amplitude is

caused by two mechanisms: 1) spreading of wave energy from a

source, generally called geometrical or radiational damping, and 2)

dissipation of energy due to mainly frictional losses in the

material itself, commonly known as attenuation, material or

internal damping.

There are several measures of energy losses in a dissipative

medium. For a plane harmonic wave, assuming that all energy losses

141
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are due to frictional forces (case of a plane wave front), the

decay in wave amplitude can be defined as

= e-a(d2-d ) (5.1)

where,

uI is the amplitude of the displacement at a distance d, from

the source,

u2 is the amplitude of the displacement at a distance d2 from
the source,

a is the attenuation coefficient, and

e is the base of natural logarithms.

Eq. 5.1 can be derived from the solution to the plane wave

equation by assuming that there is a phase shift between stresses

and strains (White, 1983; Toksdz and Johnston, 1981; Gordon and

Davis, 1968). The attenuation coefficient is not necessarily the

same for different types of waves. Shear waves generally present

different attenuation characteristics than longitudinal waves.

The natural logarithm of the ratio of the amplitudes at two

successive points spaced apart by a distance equal to one

wavelength of the harmonic wave (L) is defined as the logarithmic

decrement, 6, and is used as another measure of frictional losses.

Logarithmic decrement can be expressed as

6 = ln[ul(ddl)/u2 (d=dl+L)] (5.2)

The relationship between the logarithmic decrement and the

coefficient of attenuation is easily found to be

eV

0'%

'- .% '- , % •-0" %
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6 oL (5.3)

Another parameter that measures energy dissipation is the

"damping capacity" factor (or specific damping capacity). Damping

capacity, T, is defined as the energy dissipated in one stress

cycle divided by the elastic strain energy stored when the strain

is a maximum and is expressed as

: AW/W (5.4)

where,

AW is the energy dissipated per stress cycle, and

W is the elastic strain energy stored when the strain is a

maximum.

Equation 5.4 is based on the assumption of a hysteretic type

of behavior. The damping capacity has been found to be frequency

independent but strain dependent. At very low strains, however,

(like those associated with most wave propagation phenomena in

engineering applications, strains below 10-6) the damping capacity

appears to be independent of strain amplitude.

A similar measure of internal friction is obtained with the

material damping coefficient (or hysteretic damping ratio), D,

which is defined as

D T/47 AW/(4rW) (5.5)

In a material with small damping, the hysteretic damping

ratio can be defined as half of the ratio of the imaginary to the

real part of a complex elastic modulus, as mentioned in Section 2.2

%..-. - :*.-
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dnd used through out this study. If the complex shear modau's. 'or

instance, is defined as

G* : G + iG (5.6)

then the damping ratio in shear is

D GI/2G (5.7

where G is the real shear modulus and GI is the imaginary Dart of

the complex shear modulus.

5.3 MATERIAL DAMPING CALCULATED FROM SEISMIC RECORDS

Special interest and effort nave been devoted the past to

determination of attenuation paramters from $ie'd meas. romtmts

The field procedure itself presents severa' prob ems. suc" as

precise calibration of the receivers 's necessary, 2, "-te-e-e-ce

of reflected and refracted waves adverse'y afects t'e

measurements; 3) electrical or mecnanca' -o'se car aacerseo

affect the results; 4) perfect coup,'g oetweer -e Doeec es a-c

the receivers is necessary 5) the tee-dme-s'a -e-tat'o :'

the receivers must be accurate'y :ortrc'e. arc

between near- and far-fie'd compoments as c :e "ci eeec *1
Several procedures tc ta-" .amc-q -- "-

parameters have been croocse c " a -ca- 1,.. 'ed'

al, 1982) and an estems',e so~e -s a a, '.." "'

been compiled by 'ovsoz ar- .cr.-'- .. . *'. a 1 ns C

6%. "V

% % N
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calculate damping ratio, based on spectral analysis tecrnniques 's,.

suggested in the following paragraphs.

For a medium with a linear stress-strain relation, wave

amplitude, u, is proportional to the square root of the energy,

W1/2  Hence, Eq. 5.5 can be expressed as

0 : u/(27vu) (5.8)

where .u is the amplitude decay per cycle. Therefore, damping

ratio can be expressed as

D = -[(L/2ru)(du/dr)] (5.9) 9

where r is the distance in the direction of propagation. Upon

integrating Eq. 5.9 one finds that

..".

n (u/uO )  : "2rD/L (r-rO )  (5 .10 ) ".0

where uo is the amplitude at a reference point ro.

The relation between damping ratio, 0, and the attenuation

coefficient, a, can be obtained directly from Eq. 5.10 as .9

9%
= 2 D/L (5.11) %

The phase velocity of a plane wave, v, is related to the

vave~ength. L, by: v L/2r. Therefore damping ratio can be .define from Eq. 5.10 as %

.' d 4 /Vo ' • , . .• • . ' U .. 9 - ..,, ,.. %*. • .9 5 9 * '* . * p 
o 

i
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,.nere.

's frequency in raa/sec. 'he damping at'o ootaned Dy

Eq. 5.12 s constant with frequency

A convenient way to ca'.culate phase eoc-t'es. ,. "om 4

apparent velocities. V. 's descriea " Section 4.5. :f one .ises

apparent velocities nstead of phase 4elocity 'n Ea 5 :12 osu'ts
n

LL, -[('uu),~ -ol 5 *53

where D(-.) represents an apparent damping ratio.

In Eq. 5.13, dissipation of energy occurs only from "nterna'

friction in the material and no dissipation of energy arises fromV

geometrical spreading (plane waves have been considered) if the

seismic waves originate from a point source (as usual'y haPDOenS. a

correction must be applied to Eq. 5 13 to account for energy osses

due to geometrical spreading. It is shown in Chapter Three that

wave amplitude decay due to radiational damping is proportional to

the square root of distance for two-dimensional motion (cylimdrica ;

fronts) and is proportional to the distance for three-dime,*siona.

motion (spherical fronts). The relations are valid for the far

field, but they can be considered good approximations for a v'de ON

range of frequencies (or distances). If one assumes that the

relations are valid for any frequency range, the exoression for

apparent damping ratio becomes

%I

40,
.,5 °
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\I) (w).ln [(u/u 0)( r/r 0)1/2] (5.14)
0(w -w(r-r 0)

for two-dimensional motion, and

D~w) V(w)1ln [(u/u 0)(r/r0)] (.5
0(w) - w(r-r 0) (.5

for three-dimensional motion.

The expressions derived so far apply to steady-state harmonic

motion. Any other motion has to be decomposed into its different

harmonics by applying a Fourier transform. Then, by using the

notation introduced in Section 4.5.2 and Eqs. 4.3 and 4.4, the

equation for the apparent damping ratio becomes

U 2(f) d 2  .%V
In[ -7-. ( 0)

0(f) - 1 (f) T,(5.16)

for twa-dimensional motion, and

U 2(f) d 2In[ U dy

0() (f) (5.17)

for three-dimensional motion.

In the development of Eqs. 5.16 and 5.17. it has been N"

assumed that the response of a medium to an impulse has been

% %- %'~ %~
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decomposed into its harmonics by means of a Fourier transform. in

these equations

D(f) is apparent damping ratio,

f is frequency in Hz,

*(f) is phase of cross spectrum in radians (or difference

between the linear spectrum phases),

U1 (f) is amplitude of the linear spectrum at the first

receiver,

U2(f) is amplitude of the linear spectrum at the second

receiver, and

d, and d2 are distances from the source to the first and

second receivers, respectively.

Equations 5.16 and 5.17 can be written in terms of the auto

spectrum, A, instead of the linear spectrum as

A2(f) d2]
ln[A 2 2

D(f) - 1 ( 1)(5 18)*( f

and

A2(f) d2
In{[ A

0(f) : (5 )9*(f)

for two- and three-dimensiona, motion%, respecte ;
4,*•

4.,

-o..

% "'V%
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5.4 CURVES OF APPARENT DAMPING RATIO

Apparent damping ratios for two and three-dimensional motions

have been calculated for two materials. In the first case. the

apparent damping ratio is determined for a medium with no material

damping and Poisson's ratio of 0.25. In the second case, a medium

with 5 percent material damping and Poisson's ratio of 0.25 is

considered.

Figures 5.1 through 5.10 show the curves of apcarent damping

ratio versus dl/, for a medium with D = 0% (. is wavelength of the

shear wavF). These curves were obtained using the same spacings

between the receivers as those used to study the velocity

dispersion curves. The behavior (fluctuations with d1- and d2/0.

of these curves is similar to that found for the velocity

dispersion curves. For the two-dimensional SN-motion (FPgs 5

and 5.6), the apparent damping ratio coincides precisely with the

material damping ratio. (The disagreement at low freQuencies or

low di/, is similar to that obtained for the ooocity jispers', r

curves and the reasons for this Dehavior are not tota 'Y Known

For the cases with coupled motions 1two-dimensiona' P- and TV-

motions and three-dimensional P- and S-motionsu. apparent jamp ng

ratio presents fluctuations around the actue lamo'ng -ato c' Ie

material These fluctuations are 'arge for *,w ra'ues 0) l a,

for ow values of d2/d 1. out ,- the faf 'e'd arge spat ' s

and/or high freQuencies .he a'e )f the appa,. lamc -Q' 41

rapidly approaches the actua m,"at a IamV'-9 'It 4 -

interesting to note 4ht *hp t mur " ar4 J
° 

@ -

m'otions ~'an for )-mot'ons 'o)e "Pip i'''.r,t S a

'.

.- 'U

%'.#;".''" ". .". " ."% .. "'' ', .' .. %.. . . - .% . " , . .% ."



-~ ~~ ~~~ mo -- w -W ~ f ~ . W-- - - -- --

150

Dn r

Nr

a. ire

1L

0ot

* Co

00L 400

0 A-

* @0

-up0 * 0. -
O't 0

I Oisa



151

~ I w V 1
vi a D

w

0C 0
A Jn0t000 C.-

t 0 Z 0*0 'Z 0 t- *9-'m -D0

X) IW C VwNIJWWO INM4,tj , t

viL

C

46 0 lb

M.p.

10 t 0

X) 011tow oagiv-a~wlJ



1.52 C

CP

o Cg

0t 6

VA- r

0.0 o
O'00 Olw"



153

4 J

M .0

C I

0 V

0 4

.9-

0 .09,

V r.

gILn Ila4

A aa.

C4. 
.-. 9

'a 
a

9,~~9,, 
alit$"*--



154

ws 0

WO X1~ N .0

Sc

C4 CL

-~ 41

1.0U

a 0 .l0

o A .
SL p..

0.W

of do

.11~~~ do. ffJe 1
ILI.-I



coI

C15
_ _ _ _ _ _ _ _ _ __ _ _ _X

ut 400V r

to. %U t

0CL

0 E0

*N 0

O'CO

4i CL 9o
0%. La

ive.'

41C .0 S

t 0 a0.0 z 0- t 0- 9,0- VO *
WZ ' 0idLU !eNrdWdO .LN3~dd

% % % %



w7-q -,%7IV -w -V VVVVW ' .W.W- -VXX ~ t 'V .YV U~ ~ -i-w- k

156

T C6

-i . c.

V (A

CC~
0 C

F ~0
0v- .

o CL V

0 9 01 0 e 0 00

4~~A .0i -.AW 0 N3~



137

Ki a

C- N 0

N ~ 0 Co
-. 4J

O~0 0 .

V'__

0

0~~~~~. 'S0 40* *- 0 t

10

4-J 0.

4 0 
c

0 c
M CL

'e->

on a.

V do

CLe 0)

-C E M

01 0t0 0. 0 *Z 0 *t

t~ 0 1 x

cdo

%t

0%



158 1
U

ft

6 jI~ ij
* U -

V6  .1.* 4'. Cl

4

i

U

a
4

U
I

I,
£

0*t o~ or- : ~ ~ : S

(ZI gL~Uw ~WIdMWO ~.u3we...
£ -

p

U
U' -
No I-

I *~. .4
r w

4
b. -w
64 S

*
4

a
p

OI 00 0~- 09- ~9

(Xi OUw~ ~NIdMw0 ~w3ww~~w

I



159

%W 0

C 2f

VC.

*LL 0@ 040...

0 3"

oL
-~ 

S. .

c CP

C 0

CL-

0

w -s.A -A

£5pV,



160

For the cases where the material damping ratio was 5 percent

rather than zero (Figs. 5.11 through 5.20), the tendency is the

same as when D = 0 percent.

For typical field measurements where d2/dI has a value of the

order of 2 (such as in crosshole measurements), apparent damping

ratio can be assumed to equal the actual material damping ratio at

a value of dl/x = 2. The apparent damping ratio could be used,

therefore, to calculate material damping in the field.

Although only one unique value of damping has been used for

both shear and longitudinal motions, different values could have

been used as well. In a field experiment, the value of damping

obtained from longitudinal motion records would be that associated

with the constrained modulus while the value obtained from

transverse motion records would be that associated with the shear

modulus.

5.5 SumMRY

A brief theoretical background of wave amplitude attenuation -

is presented in this chapter. A method to calculate damping ratios

from seismic records is also presented . The method is based on

spectral analysis techniques and requires calculation of the auto

spectrum at two different receivers. For configurations such that

d2/dj is equal to two (typical of crosshole seismic testing), the

method seems to give values of apparent damping ratio that are good

approximations of the actual damping ratio for values of dl/L

greater than one. As in the case of apparent wave velocities, for

a fixed value of d1 , the best values of damping ratio are obtained

for higher ratios of d2/d1 . Although good from a theoretical point

A I.



161

ci 09 0

U,4 Ira U

A C

~ 0 0

OACL

a V

14. c 9

onC

a, c

4 -

0~ ~ ~ ~ 1 0

X) -Utl ONJUC N3VL



162

c I..'I z

C

40

'CCI6

A 2b
=. v

~CL
"C 0~

ai
0 06 Iz ll 00 01 - n.

a., X
altJ ONI.U SNWl~

~ A4b



4-8

0. 0

cis



1640

L

46 el

CL

®r or-



10 U'

.A C

16-1

0
vV

Voo

(XI~~~~c IIW NLMW cNU~ U

La.

A0

0 _ _ _ _ __ _ _ _ _ __0____0_9___waz 0

(Z)~~ ~ ~ 91U CI~J NWIJ



166

N ~D 3

*~~ TI *c

aA

o 4aN

0

C iv

al

10i

c Ce

CL S0.41

LO
C;4.

0*01 *9 0* 0 lp.lz

(21 llb ON~~fd lN~bda

%
LPN "'0j

-4 %



167

ty

IFa

'go 0

CCL

00

V en
in A c,

- cm

L 0 )06

I V

0 09 0*t a 00 -?P
0 A

(Z) gitlY NIJ~tC IN~le-U



168

00

c 1.

. Cm.

E cl

e,0 *90 0 -i 
0 1 D c3TI-

4J

1144

s-CL

40

cv,
C. 4)C

0 0

J4.

0~_ 
_ o9 

0 t0tz 
z

tI CS I
(2) IAWISNJ~tO I3Ut>.t

U,. ~ 0 1



P-a-w -WO M I RWW~Ml'W~ wWa Nwwrww wu.v 1"lwilo -low or s-. It IV - '.*. -

1rle

wlC
ev'

an io r-

0* 9 0I le 00 *- 0- It

Gi 'Al

C- 1

L

a %



.4.
4.

'4

.4

0

VT. * 

.4

I
I .

oU
p. 

Dv -~ 0

b. 3 
~* 1..

V~i~ 
L.A 

4.,

-
U

' .
o A 3

w -

h I 

-~

(~) 
U .4..

9

) 9
I,

4,

K p

4~ I~

-
4'

o 13

___________________________ 

4.

h P ~ -~ P.. -% 
4.

* 
- - - -

4

~ ~ ~~*Jwwww'~ 
-

-
.4

~

* 
-

a -a .4

- S 9 -.

- ~dd4 0 - a
S. *.' - -

;... ~

-

C.-

PS... 

V
'4..
*~ 9*-

44 -

a- .~I~ 434.

'DZ±~UQNZdWWC±N3UW~

44 4' 44 4 '4 JTI.4' 4 q4 4 ) ~4~4 ~4~t *4~~ 
*~44~' 

4



171

of view, vaues of d2/d, >> 4 will probably present complications

,n tne field since there will be very little energy arriving at the

second receiver. In this respect it is recommended that some

experimental studies be carried out to determine the best source-

receiver configuration.



CHAPTER SIX

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

6.1 IIRODUCTION

Seismic methods are used in engineering to determine the

elastic properties and damping characteristics of materials at low

strains (strains less than o.ool percent for most geotechnical

materials). Seismic methods employ both body and surface waves.

Body waves are compression and shear waves. These waves are

typically used to sample within the interior of solid media (such

as geotechnical sites). In this study, body waves are investigated

analytically to improve the understanding and uses of them. The

use of seismic methods in engineering applications presents many

advantages. For instance, seismic methods: 1. reduce sampling

disturbance; 2. model properly in situ stress conditions; 3. test S

large or small representative zones of interest; and 4. are based

on sound theoretical principles.

In most engineering applications of seismic methods using

body waves, the receivers typically have to be placed very close to

the points of excitation. This configuration creates several

complications that do not occur in most geophysical applications.

In addition, the use of information provided by the seismic records

has been routinely limited to the first arrival of the waves.

Therefore, an analytical investigation was undertaken to better
understand and use seismic methods in engineering. Results,

173

,1

,. ,



174

conclusions and recommendations from this study are summarized in

the following paragraphs. -

6.2 BODY WAVE CHARACTERISTICS

An analytical formulation to generate synthetic wave forms of

body waves created by point or line sources and propagating in a

full space was explained. The fact that body waves spread from

point source in a spherical fashion and from line sources in a

cylindrical manner can be an important factor in using these

seismic waves in engineering applications. At long distances from

the sources, spherical wave fronts can be considered plane, and the

classical theory of plane wave propagation is valid. This case is

the most common for geophysical applications where distances from

the source to the closest receivers are of the order of hundreds of

meters. Distances that are involved in most engineering

applications, however, are a few meters. The characteristics of

body waves at these short distances was studied, and an

understanding of the limitations of using the theory of plane wave

propagation was developed.

The behavior of spherical or cylindrical body waves at close

distances to the source was found to be in some cases quite

different from plane wave behavior. An analysis of the

characteristics of generated wave records from point or line

sources was performed. From these waveforms, it was found that, in

wave propagation records of longitudinal motion, there is a first

wave (denoted by Lp) propagating at the compressional wave velocity

and a second wave (denoted by LS) that exhibits longitudinal motion

but propagates at the shear wave velocity. The amplitude of the

second wave (LS) decreases at a much faster rate than that of the

'kS % N % .
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primary wave (Lp). Even though the contribution of the LS wave at

distances near the source is quite important, at distances far from

the source the LS wave is almost insignificant compared with the

primary wave (Lp). For these reasons, the primary wave in a

longitudinal-motion record is called the far-field wave (because it

lasts even in the far field), and it is the wave typically referred

to in the literature as the P-wave. The LS wave is called the

near-field wave, the near-field effect, the additional near-field

wave or the additional near-field effect because it only "exists"

in the near field.

Similar conclusions were found for transverse motion records.

In this case, however, the near-field wave (denoted as Tp)

propagates at the compressional wave velocity, and the far-field

wave (denoted as TS) propagates at the shear wave velocity.

All of these observations apply to three-dimensional (point

sources) and two-dimensional in-plane motions (line sources). For

two-dimensional antiplane motion (sometimes called SH-motion), only

one wave propagating at the shear wave velocity appears, and there

are no near-field terms.

For time domain records, near-field and far-field distances

have been defined as those distances from the source, d, such that

the value d/A is smaller or greater than two, respectively, for

transverse motions (with A being the shear wavelength). Near- and

far-field field distances are defined as those distances such that

d/A is smaller or greater than about ten for longitudinal motions

(A is again the shear wavelength).

Some of the polarity reversals in the wave forms encountered

in the field when the direction of the source is reversed were

ep
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found to be explained by the behavior of the near-field waves. In

addition, receiver cross-sensitivity and imperfect alignment

contribute to the lack of polarity reversal in the P-wave train.

6.3 BODY WAVE VELOCITIES
I.

Techniques to evaluate body wave velocities were studied in

Chapter Four. The effects that frequency and strain independent

material damping of the hysteretic type have on wave records and

resulting wave velocities were also investigated. Waves

propagating in this type of material arrive at an earlier time than

that predicted by the compressional and shear speeds, cp =

[(X + 2G)/p] and cs = (G/p)i, respectively. To obtain a good

estimate of the elastic properties, it is convenient to pick

arrival times of the wave from the source to the receiver a little

after the actual arrival of the wave. It is concluded that the

best results are obtained when interval times from first peaks or

first troughs are used. The results are always better when the

receivers are located in the far field.

The cross-correlation technique to determine interval times

is found to be an appropriate method to calculate wave velocities.

This technique has the advantage with respect to the other time-

domain methods that it can be easily automated. The results were

found to be accurate and reliable for all cases analyzed, except

for the case when compressional wave velocities were determined

from longitudinal-motion records in media with high values of

Poisson's ratio, values on the order of 0.4 or greater. (This case

of high Poisson's ratios also presented problems for some of the ,'

other techniques.)
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Spectral analysis techniques to calculate wave velocities

from the phase of the cross spectrum of two time records, or from

the phase of the transfer function of one record, are effective

tools to calculate elastic moduli. It is shown that, when two

receivers are used and the cross spectrum phase is employed, the

best values of elastic wave velocities are obtained when:

1. for a fixed dj, the ratio of the distances from the

source to the second and first receivers, d2/dl, is of

the order of four or higher. %.1

2. For a fixed value of d2/dl, the best comparisons are

obtained at high values of dl/x.

For a typical crosshole setup, where d2/dI is equal to two,

apparent velocities are equal to the plane wave phase velocities at

values of dj/L greater than one. Both procedures, using the cross

spectrum and using the transfer function present the advantage that

they can be easily automated. The only significant advantage that

the use of the transfer function seems to have with respect to the

use of the cross spectrum is of an economical nature since the

number of receivers needed is only one.

6.4 WAVE ATTENUATION AND MATERIAL DAMPING

Wave records at several distances from the source and plots

of wave amplitude attenuation with distance are presented in

Chapter Three. It was found that, for point sources, the amplitude

decay due to only geometrical damping is inversely proportional to

the distance from the source at distances that are far from the

source (d/A > 2). In the very near-field range (d/A < 0.5), the

decay is also inversely proportional to the distance. Only in a

small range of distances (0.5 < d/A < 2 for transverse motions and

" I
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0.5 < d/A < 10 for longitudinal motions) is this relation not

valid. For line sources, the amplitude reduction due to

geometrical damping is in proportion to the square root of the

distance only in the far-field. In the very near-field

(d/A < 0.5), the amplitudes decay at a smaller rate. When material

damping is included, wave amplitudes decay at much faster rates

than those corresponding to only geometrical damping for distances

greater than L (with L being the wavelength of the propagating

wave). At distances smaller than L, the decay is practically equal

to that corresponding to geometrical damping.

A technique to estimate damping ratios from seismic records

that is based on spectral analysis techniques is suggested in

Chapter Five. Apparent damping ratios calculated by this method,

fluctuated around the correct value of material damping ratio, but

at large values of dI/L, the fluctuations were minimal. The

analytical results indicate that this method can give a good

prediction of damping ratio if the two receivers are spaced at a .

ratio d2/d1 > 2 and the apparent damping ratios used to calculate

the actual damping are taken for frequencies such that dl/L is

greater than one. Like the other spectral analysis techniques to

calculate velocities, the method to compute damping can be easily

automated.
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APPENDIX B

RELATIONSHIP BETWEEN ELASTIC AND

DAMPED BODY WAVE VELOCITIES AND

MODU LI

Material damping ratio is presented in Chapter Five as a

convenient way to account for energy losses due to frictional

forces. The definition of a frequency and strain independent

damping ratio is given in Eq. 5.5. A convenient way to express

material damping ratio, for small values of damping, is by the use

of complex moduli. The damping ratio is then defined as one half

of the ratio of the imaginary part of the complex modulus by its

real part. For a material in which energy losses in shear are

different than in compression-extension types of motion, it is

preferable to define two damping ratios, one for shear and another

for compression-extension. Therefore, the damping ratio in shear,

Ds, is defined as

DS = GI/2G (B.1)

and the damping ratio in compression, Dp, as

Dp M1/2M (B.2)

where

G and G, are the real and imaginary parts of the shear

modulus, and
20

209 !i
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M and MI are the real and imaginary parts of the constrained

modulus.

In this way the complex shear modulus, G*, and complex constrained

modulus, M*, are given by

G= G + iGI = G(1 + 2iD S ) (B.3)

and

M = M + iMI = M(I + 2iDp) (B.4)

If one uses shear and compressional wave velocities as the

parameters to define the stiffness of the material, then the energy

loses associated with material damping are more easily accounted

for by using complex wave velocities. The counterparts to Eqs. 8.3

and B.4, in terms of complex shear and compression wave velocities,

(cs* and Cp, respectively) are

cs  cs + icsl = cs(l + iDS) (B.5)

and

C Cp + icpl cp(l + iDp) (B.6)

where

cs and csl are the real and imaginary parts of the shear wave

velocity, and

C and cpl are the real and imaginary parts of the

compressional wave velocity, respectively.

* ..- V C ... .% C. .•.- -. - .. A . . .' . -. - , . .% " '.
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Equations B.5 and B.6 are good approximations of Eqs. B.3 and

BA for small values of damping (as usually happens for the small

strain amplitudes encountered in most seismic engineering _

applications). In other words one can define the complex shear

modulus as

G* pCs* 2  pcs
2 (1 + 2iD s - DS2 )

pCs 2 (1 + 2iDs) =

G(I + 2iOs) (B.7) .

which is a good approximation of Eq. B.3 for small values of the

damping ratio, DS . A parallel reasoning can be used for

constrained modulus and compressional wave velocities.

,
%

It should be noted that these complex velocities do not

represent propagation velocities but are approximate mathematical

tools to account for energy dissipation. In this respect, consider

a plane harmonic wave of the form

exp[iw(t - x/c) (B.8)

This wave propagates parallel to the x-axis of a non-dissipative

medium with a propagation velocity represented by the variable c

(the phase velocity). If the phase velocity is considered complex

to account for energy losses, then the wave will be of the form

exp[iw(t - x/c*)]

.°1

,a
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exp{iw[t- x/(c + icl)]}

exp[-wclx/(c2 + c12) ] • exp{iw[t - cx/(c 2 + c,2 )]} (B.9)

Equation B.A represents a plane wave that propagates along

the x-axis with a velocity, cD, the damped wave propagation

velocity, which has a value of

cD = (c2 + ci2 )/c (B.10)

and whose amplitude attenuates with distance with a coefficient of

attenuation, a of

a = Wcl/(c 2 + c12) (B.11)

By expressing Eqs. B.1O and B.11 in terms of the damping .

ratio, the damped velocity of propagation is given by, . J*

,.

CD  c.(1 + D2 ) (B.12)

and the coefficient of attenuation is given by
*,°*

a= w-.D/[c(1 + D2 )]

W.D/c = 21D/L (B.13) '-

where L is the wavelength, (L 2vc/w).

It can be observed from Eq. B.12 that a damped wave

propagates at a velocity which is practically the same as that of

% ,

' . .°%U U U ***** -UoU. . ....
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the undamped wave. For instance, if D = 5 % the damped wave

velocity is only 0.25 percent higher than the undamped elastic

velocity, and if D = 20 % (very high value) the damped velocity is

still only 4 percent higher than the undamped elastic velocity.
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antiplane shear motion in a medium with five
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